Rechercher un outil
Inverse d'une Matrice

Outil d'inversion de matrice. L'inverse d'une matrice carrée M est une matrice notée M^-1 telle que M.M^-1=I ou I est la matrice identité.

Résultats

Inverse d'une Matrice -

Catégorie(s) : Matrice

Partager
Partager
dCode et vous

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil de Inverse d'une Matrice, alors écrivez-nous c'est gratuit ! Merci !

Inverse d'une Matrice

Calculatrice de l'Inverse d'une Matrice Carrée NxN

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Inverse Modulaire d'une Matrice

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Outil d'inversion de matrice. L'inverse d'une matrice carrée M est une matrice notée M^-1 telle que M.M^-1=I ou I est la matrice identité.

Réponses aux Questions

Comment calculer l'inverse d'une matrice inversible ?

L'inverse d'une matrice carrée se calcule de plusieurs façons. La plus facile est la méthode des cofacteurs qui nécessite au préalable de calculer le déterminant de la matrice, mais aussi la comatrice C (qui est la transposée de la matrice des cofacteurs) :

$$ M^{-1}=\frac1{\det M} \,^{\operatorname t}\!{{\rm com} M} = \frac1{\det M} \,^{\rm t}\!C $$

Pour une matrice 2x2 :

$$ M^{-1} = \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix}^{-1} = \frac{1}{\det(M)} \begin{bmatrix} d & -b \\ -c & a \\ \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \\ \end{bmatrix} $$

Exemple : $$ M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} \Rightarrow M^{-1} = \frac{1}{\det(M)} \begin{bmatrix} 4 & -2 \\ -3 & 1 \\ \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \\ \end{bmatrix} $$

Il est indispensable que le déterminant de la matrice a inverser ne soit pas nul pour que la matrice soit inversible.

Comment prouver qu'une matrice est inversible ?

Une matrice est inversible si son déterminant est non nul (différent de 0).

Une matrice non inversible est dite singulière.

Comment vérifier qu'une matrice est l'inverse d'une autre ?

La multiplication de la matrice par son inverse doit donner la matrice identité. Soit le calcul de $ M . M^{-1} = I $.

Comment calculer l'inverse modulaire d'une matrice ?

Le principe est identique, mais au lien de calculer le déterminant, calculer l'inverse modulaire du déterminant de la matrice.

Code source

dCode se réserve la propriété du code source de l'outil 'Inverse d'une Matrice' en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), tout algorithme, applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction (convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codé en langage informatique (PHP, Java, C#, Python, Javascript, Matlab, etc.) aucune donnée, script ou accès API ne sera cédé gratuitement, idem pour télécharger Inverse d'une Matrice pour un usage hors ligne, PC, tablette, appli iPhone ou Android !

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil de Inverse d'une Matrice, alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/inverse-matrice
© 2020 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?