Rechercher un outil
Produit Matriciel

Outil pour calculer des produits matriciels en calcul formel. Le produit matriciel consiste en la multiplication de matrices (carrées ou rectangulaires).

Résultats

Produit Matriciel -

Catégorie(s) : Matrice

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Produit Matriciel', alors écrivez-nous c'est gratuit ! Merci !

Produit Matriciel

Produit Matriciel

Produit de 2 Matrices


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Produit d'une Matrice par un Scalaire (Nombre)


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Voir aussi : Calcul Matriciel

Produit d'une Matrice Ligne par une Matrice Colonne


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Réponses aux Questions (FAQ)

Qu'est ce qu'un produit matriciel ? (Définition)

Le produit matriciel est le nom donné à la méthode de multiplication de matrices la plus courante.

$ M_1=[a_{ij}] $ est une matrice de $ m $ lignes et $ n $ colonnes et $ M_2=[b_{ij}] $ est une matrice de $ n $ lignes et $ p $ colonnes (tous les formats sont possibles 2x2, 2x3, 3x2, 3x3, 3x4, 4x3, etc.). Le produit matriciel $ M_1.M_2 = [c_{ij}] $ est une matrice de $ m $ lignes et $ p $ colonnes, avec : $$ \forall i, j : c_{ij} = \sum_{k=1}^n a_{ik}b_{kj} $$

La multiplication de 2 matrices $ M_1 $ et $ M_2 $ se note avec un point $ \cdot $ ou . soit $ M_1 \cdot M_2 $

Le produit matriciel n'est défini que si le nombre de colonnes de $ M_1 $ est égal au nombre de lignes de $ M_2 $ (les matrices sont dites compatibles)

Comment multiplier 2 matrices ? (Produit matriciel)

La multiplication de 2 matrices $ M_1 $ et $ M_2 $ forme une matrice résultat $ M_3 $. Le produit matriciel consiste à réaliser des additions et des multiplications en fonction des positions des éléments dans les matrices $ M_1 $ et $ M_2 $.

$$ M_1 = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \\ M_2 = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix} \\ M_1 \cdot M_2 = \begin{bmatrix} a_{11}b_{11} +\cdots + a_{1n}b_{n1} & a_{11}b_{12} +\cdots + a_{1n}b_{n2} & \cdots & a_{11}b_{1p} +\cdots + a_{1n}b_{np} \\ a_{21}b_{11} +\cdots + a_{2n}b_{n1} & a_{21}b_{12} +\cdots + a_{2n}b_{n2} & \cdots & a_{21}b_{1p} +\cdots + a_{2n}b_{np} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}b_{11} +\cdots + a_{mn}b_{n1} & a_{m1}b_{12} +\cdots + a_{mn}b_{n2} & \cdots & a_{m1}b_{1p} +\cdots + a_{mn}b_{np} \end{bmatrix} $$

Pour calculer la valeur de l'élément de la matrice $ M_3 $ en position $ i $ et colonne $ j $, extraire la ligne $ i $ de la matrice $ M_1 $ et la ligne $ j $ de la matrice $ M_2 $ et en calculer leur produit scalaire. C'est-à-dire, multiplier le premier élément de la ligne $ i $ de $ M_1 $ par le premier élément de la colonne $ j $ de $ M_2 $, puis le second élément de la ligne $ i $ de $ M_1 $ par le second élément de la colonne $ j $ de $ M_2 $, et ainsi de suite, noter la somme des multiplications obtenue, c'est la valeur du produit scalaire, donc de l'élément en position $ i $ et colonne $ j $ dans $ M_3 $.

Exemple : $$ \begin{bmatrix} 1 & 0 \\ -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 1 \times 2 + 0 \times 4 & 1 \times -1 + 0 \times -3 \\ -2 \times 2 + 4 \times 3 & -2 \times -1 + 3 \times -3 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 8 & -7 \end{bmatrix} $$

Comment multiplier une matrice par un scalaire ?

Le produit d'une matrice $ M=[a_{ij}] $ par un scalaire (nombre) $ \lambda $ est une matrice de même taille que la matrice initiale $ M $, avec chaque élément de la matrice multiplié par $ \lambda $.

$$ \lambda M = [ \lambda a_{ij} ] $$

Quelles sont les propriétés de la multiplication de matrices ?

Associativité : $$ A \times (B \times C) = (A \times B) \times C $$

Distributivité (par rapport à l'opération d'addition) : $$ A \times (B + C) = A \times B + A \times C $$

$$ (A + B) \times C = A \times C + B \times C $$

$$ \lambda (A \times B) = (\lambda A) \times B = A \times (\lambda B) $$

L'ordre des opérandes a une importance dans la multiplication matricielle, ainsi $$ M_1.M_2 \neq M_2.M_1 $$

Comment multiplier deux matrices de tailles incompatibles ?

Il existe un produit matriciel compatible avec n'importe quelles tailles de matrice : le produit de Kronecker.

Code source

dCode se réserve la propriété du code source de l'outil 'Produit Matriciel' en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), tout algorithme pour 'Produit Matriciel', applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction liée à 'Produit Matriciel' (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codé en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) aucune donnée, téléchargement, script, copier-coller, ou accès API à 'Produit Matriciel' ne sera cédé gratuitement, idem pour un usage hors ligne, PC, tablette, appli iPhone ou Android ! dCode est gratuit est en ligne.

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Produit Matriciel', alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/produit-matriciel
© 2021 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?