Rechercher un outil
Déterminant d'une Matrice

Outil de calcul du déterminant d'une matrice. Le déterminant d'une matrice carré M est une valeur calculées à partir des élements la composant noté det(M) ou encore |M|.

Résultats

Déterminant d'une Matrice -

Catégorie(s) : Mathématiques, Algèbre, Calcul Formel

dCode et vous

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les énigmes et les problèmes à résoudre au quotidien !
Vous avez un problème, une idée de projet, besoin d'un outil spécifique et dCode ne peut pas (encore) vous aider ? Vous désirez une prestation de développement sur mesure ? Contactez-moi !


dCodeur lit tous les messages et y répond si vous indiquez un email (non publié) ! C'est grâce à vous que dCode a le meilleur outil de Déterminant d'une Matrice, Merci.

Déterminant d'une Matrice

Annonces sponsorisées

Calcul de Déterminant d'une Matrice 2x2

Calcul de Déterminant d'une Matrice 3x3

Calcul de Déterminant d'une Matrice 4x4

Calcul de Déterminant d'une Matrice NxN

Outil de calcul du déterminant d'une matrice. Le déterminant d'une matrice carré M est une valeur calculées à partir des élements la composant noté det(M) ou encore |M|.

Réponses aux Questions

Comment calculer le déterminant d'une matrice ?

Pour une matrice carrée d'ordre 2, on effectue le calcul :

$$ \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc $$

Un moyen mnémotechnique est de soustraire la première diagonale à la seconde.

Exemple : $$ \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \times 4 - 2 \times 3 = -2 $$

Pour les matrices de taille supérieure comme 3x3, on effectue le calcul :

$$ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix} \\ = aei-afh+bfg-bdi+cdh-ceg $$

L'idée est la même pour les matrices d'ordre supérieur :

Pour une matrice 4x4 :

$$ \begin{vmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{vmatrix} = a \begin{vmatrix} f & g & h \\ j & k & l \\ n & o & p \end{vmatrix} - b \begin{vmatrix} e & g & h \\ i & k & l \\ m & o & p \end{vmatrix} + c \begin{vmatrix} e & f & h \\ i & j & l \\ m & n & p \end{vmatrix} - d \begin{vmatrix} e & f & g \\ i & j & k \\ m & n & o \end{vmatrix} \\ = \\ a(fkp − flo − gjp + gln + hjo − hkn) − b(ekp − elo − gip + glm + hio − hkm) + c(ejp − eln − fip + flm + hin − hjm) − d(ejo − ekn − fio + fkm + gin − gjm) \\ = \\ afkp − aflo − agjp + agln + ahjo − ahkn − bekp + belo + bgip − bglm − bhio + bhkm + cejp − celn − cfip + cflm + chin − chjm − dejo + dekn + dfio − dfkm − dgin + dgjm $$

Quelle est la formule de calcul de déterminant d'une matrice d'ordre n ?

Il n'existe pas de formule plus simple que l'explication ci-dessus pour le cas général d'une matrice d'ordre n.

Comment calculer le déterminant d'une matrice 1x1 ?

Pour une matrice 1x1, le déterminant est le seul élément de la matrice.

Exemple : $$ | 1 | = 1 $$

Quel est le déterminant d'une matrice identité ?

Une matrice identité a pour déterminant 1.

Exemple : $$ \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \times 1 - 0 \times 0 $$

Exemple : $$ \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = ( 1 \times 1 \times 1) - (1 \times 0 \times 0) + (0 \times 0 \times 0) - (0 \times 0 \times 1) + (0 \times 0 \times 0) - (0 \times 1 \times 0) = 1 $$

Seul le terme correspond à la multiplication de la diagonale vaudra 1 et les autres termes seront nuls.

Poser une nouvelle question

Code source

dCode se réserve la propriété du code source du script Déterminant d'une Matrice en ligne. Sauf code licence open source explicite (indiqué Creative Commons / gratuit), tout algorithme, applet, snippet ou logiciel (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction (convertir, résoudre, décrypter, encrypter, déchiffrer, chiffrer, décoder, traduire) codé en langage informatique (PHP, Java, C#, Python, Javascript, etc.) dont dCode a les droits pourra être cédé après devis. Donc si vous avez besoin de télécharger le script en ligne Déterminant d'une Matrice pour un usage hors ligne pour vous, votre entreprise ou association, rendez-vous sur la page de contact !

Questions / Commentaires


dCodeur lit tous les messages et y répond si vous indiquez un email (non publié) ! C'est grâce à vous que dCode a le meilleur outil de Déterminant d'une Matrice, Merci.


Source : https://www.dcode.fr/determinant-matrice
© 2017 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches. dCode