Tool to invert a matrix. The inverse of a square matrix M is a matrix denoted M^-1 such as que M.M^-1=I where I is the identity matrix.

Inverse of a Matrix - dCode

Tag(s) : Matrix

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!

A suggestion ? a feedback ? a bug ? an idea ? *Write to dCode*!

The inverse of a square matrix $ M $ is noted $ M^{-1} $ and can be calculated in several ways. The most suitable for 2x2 or 3x3 matrix sizes is the cofactor method which necessitate to calculate the determinant of the matrix $ \det M $ and the transposed cofactor matrix (also called adjugate matrix $ \operatorname{adj}(M) $):

$$ M^{-1} = \frac{1}{\det M} \left( \operatorname{cof}(M) \right)^\mathsf{T} = \frac{1}{\det M} \operatorname{adj}(M) $$

The dCode calculator works for any size of square matrix.

For a 2x2 matrix (order 2):

$$ M = \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix} \\ \det(M) = ad - bc \\ \operatorname{cof}(M) = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix} \\ \operatorname{adj}(M) = \left( \operatorname{cof}(M) \right)^\mathsf{T} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \\ M^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \\ \end{bmatrix} $$

__Example:__ $$ M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} \Rightarrow M^{-1} = \frac{1}{\det(M)} \begin{bmatrix} 4 & -2 \\ -3 & 1 \\ \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \\ \end{bmatrix} $$

For a 3x3 matrix (order 3):

$$ M^{-1} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} = \left( \begin{bmatrix} \frac{e i-f h}{-c e g+b f g+c d h-a f h-b d i+a e i} & \frac{c h-b i}{-c e g+b f g+c d h-a f h-b d i+a e i} & \frac{b f-c e}{-c e g+b f g+c d h-a f h-b d i+a e i} \\ \frac{f g-d i}{-c e g+b f g+c d h-a f h-b d i+a e i} & \frac{a i-c g}{-c e g+b f g+c d h-a f h-b d i+a e i} & \frac{c d-a f}{-c e g+b f g+c d h-a f h-b d i+a e i} \\ \frac{d h-e g}{-c e g+b f g+c d h-a f h-b d i+a e i} & \frac{b g-a h}{-c e g+b f g+c d h-a f h-b d i+a e i} & \frac{a e-b d}{-c e g+b f g+c d h-a f h-b d i+a e i} \end{bmatrix} \right) $$

It is essential that the determinant of the matrix to be inverted is not equal to zero for the matrix to be invertible.

A matrix is invertible if its determinant is non-zero (different from 0). So to prove that a matrix has an inverse, calculate the determinant of the matrix, if it is different from 0, then the matrix is invertible.

A non **invertible matrix** is called *singular* (inversion is not possible).

Avoid the term *inversible* which is wrong.

A matrix with a determinant equal to 0 is not invertible. It does not have an inverse, it is not possible to calculate its inverse.

The multiplication of the matrix by its inverse must give the identity matrix. So the computation of $ M . M^{-1} = I $.

The principle is the same, but instead of calculating the determinant, calculate the modular inverse of the matrix determinant.

dCode retains ownership of the online 'Inverse of a Matrix' tool source code. Except explicit open source licence (indicated CC / Creative Commons / free), any 'Inverse of a Matrix' algorithm, applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any 'Inverse of a Matrix' function (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and no data download, script, copy-paste, or API access for 'Inverse of a Matrix' will be for free, same for offline use on PC, tablet, iPhone or Android ! dCode is free and online.

Please, check our dCode Discord community for help requests!

NB: for encrypted messages, test our automatic cipher identifier!

- Square Matrix Inverse Calculator NxN
- Matrix Modular Inverse Calculator
- How to calculate the inverse of an invertible matrix?
- How to prove that a matrix is invertible?
- How to inverse a matrix with zero determinant?
- How to check that a matrix is the inverse of another?
- How to calculate the modular inverse of a matrix?

inverse,matrix,square,identity,inversion,invertible,singular

Source : https://www.dcode.fr/matrix-inverse

© 2021 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.

Feedback

▲
Thanks to your feedback and relevant comments, dCode has developed the best 'Inverse of a Matrix' tool, so feel free to write! Thank you!