Rechercher un outil
Domaine de Définition d'une Fonction

Outil pour calculer le domaine de définition d'une fonction f(x), c'est-à-dire l'ensemble des valeurs x qui ont une image par la fonction f (à partir de l'équation de la fonction ou de sa courbe).

Résultats

Domaine de Définition d'une Fonction -

Catégorie(s) : Fonctions

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Domaine de Définition d'une Fonction', alors écrivez-nous c'est gratuit ! Merci !

Domaine de Définition d'une Fonction

Calcul du Domaine de Définition





Réponses aux Questions (FAQ)

Qu'est ce qu'un ensemble de définition d'une fonction ? (Définition)

Une fonction $ f $ dans $ \mathbb{R} $, possède un ensemble de définition (ou domaine de définition), noté $ D_f $, qui est l'ensemble des nombres réels qui admettent une image par la fonction $ f $.

Exemple : L'ensemble de définition de la fonction $ x^3 $ est $ \mathbb{R} = ]-\infty ; +\infty [ $ car tout nombre réel a une valeur au cube.
L'ensemble de définition de la fonction $ \sqrt{x} $ est $ \mathbb{R^+} = [0;+\infty [ $ car seuls les réels positifs ou nuls ont une racine carrée.

Comment trouver le domaine de définition d'une fonction ?

Calculer l'ensemble de définition d'une fonction dans $ \mathbb{R} = ]-\infty ; +\infty [ $, c'est déterminer les valeurs pour lesquelles la fonction existe et celles pour lesquelles elle n'existe pas, c'est-à-dire toutes les valeurs de la variable $ x $ telles que $ f(x) $ n'est pas définie.

A partir de l'équation de la fonction

Il y a généralement 3 cas principaux de valeurs non définies (pour les fonctions réelles) :

division par $ 0 $ (dénominateur nul), puisque $ 0 $ n'a pas d'inverse

racine carrée négative : $ \sqrt{x} $ n'est défini que pour $ x \ge 0 $ dans $ \mathbb{R} $

logarithme négatif : $ \log(x) $ n'est défini que pour $ x > 0 $

dCode va calculer et vérifier les valeurs sans inverse par la fonction $ f $ et renvoyer l'intervalle correspondant au domaine de définition de la fonction.

Exemple : Soit $ f(x) = \sqrt{1-2x} $, comme une racine ne peut pas être négative, calculer les valeurs telles que $ 1-2x \ge 0 \iff x \le 1/2 $. Ainsi $ f(x) $ existe si et seulement si $ x \le 1/2 $. Le domaine de définition s'écrit aussi $ D = ]-\infty ; 1/2] $

A partir de la courbe de la fonction

Il s'agit de regarder les valeurs pour lesquelles la courbe n'a pas de point. Soit parce qu'il y a une asymptote verticale, soit parce qu'il n'y a aucune valeur définie.

Que signifient les domaines R+ ou R- ou R* ?

$ \mathbb{R} $ est le domaine des nombres réels, aussi noté $ ]-\infty ;+\infty [ $

$ \mathbb{R^+} $ (R plus) est le domaine des réels positifs (0 inclus), aussi noté $ [0;+\infty [ $

$ \mathbb{R^-} $ (R moins) est le domaine des réels négatifs (0 inclus), aussi noté $ ]-\infty; 0] $

$ \mathbb{R^*} $ (R étoile) est le domaine des réels privé de 0, c'est à dire tous les nombres réels mais en excluant la valeur 0, aussi noté $ ]-\infty; 0[ \cup ]0;+\infty [ $

$ \mathbb{R_+^*} $ (R étoile plus) est le domaine des réels positifs (0 exclus), aussi noté $ ]0;+\infty [ $

$ \mathbb{R_-^*} $ (R étoile moins) est le domaine des réels négatifs (0 exclus), aussi noté $ ]-\infty; 0[ $

$ \mathbb{R}\backslash\lbrace{n}\rbrace $ est le domaine des nombres réels privé du nombre $ n $, aussi noté $ ]-\infty; n[ \cup ]n;+\infty [ $

Qu'est ce qu'un antécédent ?

Soit une fonction y = f(x) alors le nombre y s'appelle l’image de x, et x s'appelle un antécédent de y par la fonction f dans le domaine de définition D.

Qu'est ce que le domaine d'existence d'une fonction ?

Le domaine d'existence et le domaine de définition d'une fonction sont identiques, c'est le même concept.

Quelle est la différence entre un ensemble de définition et un domaine de définition ?

C'est la même chose.

Code source

dCode se réserve la propriété du code source de "Domaine de Définition d'une Fonction" en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), l'algorithme pour "Domaine de Définition d'une Fonction", l'applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou les fonctions liée à "Domaine de Définition d'une Fonction" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou les données, en téléchargement, script, ou copier-coller, ou les accès API à "Domaine de Définition d'une Fonction" ne sont pas publics, idem pour un usage hors ligne, PC, tablette, appli iPhone ou Android ! Rappel : dCode est gratuit.

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Domaine de Définition d'une Fonction', alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/domaine-definition-fonction
© 2021 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?