Outil pour calculer des logarithmes avec la fonction logarithme, notée log ou ln, définie par une base (la base e pour le logarithme népérien).
Logarithme - dCode
Catégorie(s) : Fonctions
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !
La définition du logarithme naturel est la fonction dont la dérivée est la fonction inverse de $ x \mapsto \frac 1 x $ définie pour $ x \in \mathbb{R}_+^* $.
Le logarithme naturel se note log ou ln et a pour base le nombre $ e \approx 2.71828\ldots $ (voir les décimales du nombre e).
Exemple : $ \log(7) = \ln(7) \approx 1.94591 $
Certaines personnes et calculatrices utilisent $ \log $ pour $ \log_{10} $, veiller à connaitre quelle notation est utilisée. La calculatrice de dCode utilise toujours $ \log = \ln $.
Un logarithme en base $ N $ se calcule à partir de logarithme népériens selon la formule : $$ \log_{N}(x) = \frac {\ln(x)} {\ln(N)} $$
Il en découle que $ log_{a}(b) = \frac {\ln(b)} {\ln(a)} $ et $ log_{b}(a) = \frac {\ln(a)} {\ln(b)} $ sont des inverses
Le logarithme népérien est l'autre nom du logarithme naturel (donc en base e).
Le logarithme décimal noté $ \log_{10} $ ou log10 est le logarithme en base $ 10 $. C'est un des logarithmes les plus utilisé dans les calculs et les échelles logarithmiques. $$ \log_{10}(x) = \frac {\ln(x)} {\ln(10)} $$
Exemple : $ \log_{10}(1000) = 3 $
Le logarithme binaire noté $ \log_{2} $ (ou parfois $ lb $) est le logarithme en base $ 2 $. C'est le logarithme utilisé principalement pour les calculs informatiques. $$ \log_2(x) = \frac {\ln(x)} {\ln(2)} $$
Utiliser la formule ci-dessus pour calculer un log2 avec une calculatrice ne disposant que de la touche log ou ln.
Tout logarithme a comme propriétés :
— $ \log_b(x \cdot y) = \log_b(x) +\log_b(y) $ (transformation d'un produit en somme)
— $ \log_b \left( \frac{x}{y} \right) = \log_b(x) - \log_b(y) $ (transformation d'un quotient en soustraction)
— $ \log_b (x^a) = a \log_b(x) $ (transformation d'une puissance en multiplication)
— $ \log_b(b) = 1 $
— $ \log(e) = \ln(e) = 1 $
— $ \log_{10}(10) = 1 $
— $ \log_b(1) = ln(1) = 0 $
— $ \log_b(b^n) = \ln(e^n) = n $ (fonction inverse de l'exponentiation)
dCode se réserve la propriété du code source pour "Logarithme". Tout algorithme pour "Logarithme", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Logarithme" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Logarithme" ou tout autre élément ne sont pas publics (sauf licence open source explicite). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.
Le contenu de la page "Logarithme" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source (Licence de libre diffusion Creative Commons CC-BY).
L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien :
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Logarithme sur dCode.fr [site web en ligne], consulté le 15/06/2025,