Rechercher un outil
Restes Chinois

Outil pour appliquer le théorème des restes chinois. Le théorème des restes chinois permet de résoudre des systèmes d'équations de congruences en arithmétique modulaire.

Résultats

Restes Chinois -

Catégorie(s) : Arithmétique

Partager
Partager
dCode et vous

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil de Restes Chinois, alors écrivez-nous c'est gratuit ! Merci !

Restes Chinois

Calculatrice de Restes Chinois



Outil pour appliquer le théorème des restes chinois. Le théorème des restes chinois permet de résoudre des systèmes d'équations de congruences en arithmétique modulaire.

Réponses aux Questions

Qu'est-ce que le théorème des restes chinois ?

Le théorème des restes chinois est le nom donné à un système de congruences simultanées (équations modulaires multiples). Le problème original consiste à considérer un certain nombre d'éléments dont les restes de leurs divisions euclidiennes sont connus.

Exemple : Rangés par 3 il en reste 2. Rangés par 5, il en reste 3 et rangés par 7, il en reste 2. Combien ai-je d'objets ?

Soient une liste de $ k $ entiers $ n_1, ..., n_k $ premiers entre eux et leur produit $ n = \prod_{i=1}^k n_i $. Pour tous entiers $ a_1, ... , a_k $, il existe un autre entier $ x $ qui est unique modulo $ n $, tel que :

$$ \begin{matrix} x \equiv a_1\pmod{n_1} \\ \ldots \\ x \equiv a_k\pmod{n_k} \end{matrix} $$

Comment calculer les restes chinois ?

Pour trouver une solution du système de congruences, considérer les nombres $ \hat{n}_i = \frac n{n_i} = n_1 \ldots n_{i-1}n_{i+1}\ldots n_k $ qui sont aussi premiers entre eux. Pour trouver les inverses modulaires, utiliser le théorème de Bézout pour trouver des entiers $ u_i $ et $ v_i $ tels que $ u_i n_i + v_i \hat{n}_i = 1 $. Ici, $ v_i $ est l'inverse de $ \hat{n}_i $ modulo $ n_i $.

Considérer alors les nombres $ e_i = v_i \hat{n}_i \equiv 1 \mod{n_i} $. Une solution particulière du théorème des restes chinois est $$ x = \sum_{i=1}^k a_i e_i~ $$

Le programme accepte les nombres sous forme de couples (reste, modulo) ou écrire x = A mod B

Exemple : $ (2,3),(3,5),(2,7) \iff \left\{ \begin{array}{ll} x = 2 \mod 3 \\ x = 3 \mod 5 \\ x = 2 \mod 7 \end{array} \right. \Rightarrow x = 23 $

Code source

dCode se réserve la propriété du code source de l'outil 'Restes Chinois' en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), tout algorithme, applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction (convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codé en langage informatique (PHP, Java, C#, Python, Javascript, Matlab, etc.) aucune donnée, script ou accès API ne sera cédé gratuitement, idem pour télécharger Restes Chinois pour un usage hors ligne, PC, tablette, appli iPhone ou Android !

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil de Restes Chinois, alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/restes-chinois
© 2020 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?