Rechercher un outil
Produit Tensoriel

Outil pour réaliser un calcul de produit tensoriel, une sorte de multiplication applicable sur des tenseurs, des vecteurs ou des matrices.

Résultats

Produit Tensoriel -

Catégorie(s) : Matrice

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Produit Tensoriel', alors écrivez-nous c'est gratuit ! Merci !

Produit Tensoriel

Produit Tensoriel ⊗ de Matrices


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)
Voir aussi : Calcul Matriciel

Produit Tensoriel ⊗ de Vecteurs


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)
Voir aussi : Produit Matriciel

Outil pour réaliser un calcul de produit tensoriel, une sorte de multiplication applicable sur des tenseurs, des vecteurs ou des matrices.

Réponses aux Questions

Comment calculer un produit tensoriel de matrices ?

A partir de 2 matrices $ A=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} $ et $ B=\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix} $ le produit tensoriel noté $ \otimes $ se calcule $$ A \otimes B = \begin{bmatrix}a_{11}\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}&a_{12}\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix} \\ a_{21}\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix} & a_{22}\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}\end{bmatrix} = \begin{bmatrix}a_{11}b_{11}&a_{11}b_{12}&a_{12}b_{11}&a_{12}b_{12}\\a_{11}b_{21}&a_{11}b_{22}&a_{12}b_{21}&a_{12}b_{22}\\a_{21}b_{11}&a_{21}b_{12}&a_{22}b_{11}&a_{22}b_{12}\\a_{21}b_{21}&a_{21}b_{22}&a_{22}b_{21}&a_{22}b_{22}\end{bmatrix} $$

Comment calculer un produit tensoriel de vecteurs ?

A partir de 2 vecteurs $ \vec{a} = \begin{bmatrix}a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} $ et $ \vec{b} = \begin{bmatrix}b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} $ le produit tensoriel noté $ \otimes $ se calcule $$ \vec{a} \otimes \vec{b} = \vec{a} . \vec{b}^T $$ c'est à dire comme un produit matriciel mais avec la matrice transposée du second vecteur.

$$ \vec{a} \otimes \vec{b} = \begin{bmatrix}a_1 b_1 & a_1 b_2 & \cdots &a_1 b_m \\ a_2 b_1 & a_2 b_2&\cdots &a_2 b_m \\ \vdots & \vdots & \ddots & \vdots \\ a_n b_1 & a_n b_2 & \cdots & a_n b_m \end{bmatrix} $$

Code source

dCode se réserve la propriété du code source de l'outil 'Produit Tensoriel' en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), tout algorithme, applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction (convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codé en langage informatique (PHP, Java, C#, Python, Javascript, Matlab, etc.) aucune donnée, script ou accès API ne sera cédé gratuitement, idem pour télécharger Produit Tensoriel pour un usage hors ligne, PC, tablette, appli iPhone ou Android !

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Produit Tensoriel', alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/produit-tensoriel
© 2020 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?