Search for a tool
Matrix Product

Tool to calculate matrix products. Matrix product algebra consists of the multiplication of matrices (square or rectangular).

Results

Matrix Product -

Tag(s) : Matrix

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Thanks to your feedback and relevant comments, dCode has developed the best 'Matrix Product' tool, so feel free to write! Thank you!

Matrix Product

Matrix Product

Product of 2 Matrices


Loading...
(if this message do not disappear, try to refresh this page)

Loading...
(if this message do not disappear, try to refresh this page)

Product of a Matrix by a Scalar (Number)


Loading...
(if this message do not disappear, try to refresh this page)

Alphabet


Loading...
(if this message do not disappear, try to refresh this page)

Loading...
(if this message do not disappear, try to refresh this page)

Answers to Questions (FAQ)

What is a matrix product? (Definition)

The matrix product is the name given to the most common matrix multiplication method.

$ M_1=[a_{ij}] $ is a matrix of $ m $ lines and $ n $ columns and $ M_2=[b_{ij}] $ is a matrix of $ n $ lines and $ p $ columns (all formats are possible 2x2, 2x3, 3x2, 3x3, 3x4, 4x3, etc.). The matrix product $ M_1.M_2 = [c_{ij}] $ is a matrix of $ m $ lines and $ p $ columns, with: $$ \forall i, j : c_{ij} = \sum_{k=1}^n a_{ik}b_{kj} $$

The multiplication of 2 matrices $ M_1 $ and $ M_2 $ is noted with a point $ \cdot $ or . so $ M_1 \cdot M_2 $

The matrix product is only defined when the number of columns of $ M_1 $ is equal to the number of rows of $ M_2 $ (matrices are called compatible)

How to multiply 2 matrices? (Matrix product)

The multiplication of 2 matrices $ M_1 $ and $ M_2 $ forms a result matrix $ M_3 $. The matrix product consists in carrying out additions and multiplications according to the positions of the elements in the matrices $ M_1 $ and $ M_2 $.

$$ M_1 = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \\ M_2 = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix} \\ M_1 \cdot M_2 = \begin{bmatrix} a_{11}b_{11} +\cdots + a_{1n}b_{n1} & a_{11}b_{12} +\cdots + a_{1n}b_{n2} & \cdots & a_{11}b_{1p} +\cdots + a_{1n}b_{np} \\ a_{21}b_{11} +\cdots + a_{2n}b_{n1} & a_{21}b_{12} +\cdots + a_{2n}b_{n2} & \cdots & a_{21}b_{1p} +\cdots + a_{2n}b_{np} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}b_{11} +\cdots + a_{mn}b_{n1} & a_{m1}b_{12} +\cdots + a_{mn}b_{n2} & \cdots & a_{m1}b_{1p} +\cdots + a_{mn}b_{np} \end{bmatrix} $$

To calculate the value of the element of the matrix $ M_3 $ in position $ i $ and column $ j $, extract the row $ i $ from the matrix $ M_1 $ and the row $ j $ from the matrix $ M_2 $ and calculate their dot product. That is, multiply the first element of row $ i $ of $ M_1 $ by the first element of column $ j $ of $ M_2 $, then the second element of row $ i $ of $ M_1 $ by the second element of the column $ j $ of $ M_2 $, and so on, note the sum of the multiplications obtained, it is the value of the scalar product, therefore of the element in position $ i $ and column $ j $ in $ M_3 $.

Example: $$ \begin{bmatrix} 1 & 0 \\ -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 1 \times 2 + 0 \times 4 & 1 \times -1 + 0 \times -3 \\ -2 \times 2 + 4 \times 3 & -2 \times -1 + 3 \times -3 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 8 & -7 \end{bmatrix} $$

How to multiply a matrix by a scalar?

The product of the matrix $ M=[a_{ij}] $ by a scalar (number) $ \lambda $ is a matrix of the same size as the initial matrix $ M $, with each item of the matrix multiplied by $ \lambda $.

$$ \lambda M = [ \lambda a_{ij} ] $$

What are matrix multiplication properties?

Associativity: $$ A \times (B \times C) = (A \times B) \times C $$

Distributivity: $$ A \times (B + C) = A \times B + A \times C $$

$$ (A + B) \times C = A \times C + B \times C $$

$$ \lambda (A \times B) = (\lambda A) \times B = A \times (\lambda B) $$

The order of the operands matters with matrix multiplication, so $$ M_1.M_2 \neq M_2.M_1 $$

How to multiply two matrices of incompatible shapes?

There is a matrix product compatible with any matrix sizes: the Kronecker product.

Source code

dCode retains ownership of the online "Matrix Product" source code. Except explicit open source licence (indicated CC / Creative Commons / free), the "Matrix Product" algorithm, the applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or the "Matrix Product" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and all data download, script, copy-paste, or API access for "Matrix Product" are not public, same for offline use on PC, tablet, iPhone or Android ! Remainder : dCode is free to use.

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Thanks to your feedback and relevant comments, dCode has developed the best 'Matrix Product' tool, so feel free to write! Thank you!


Source : https://www.dcode.fr/matrix-multiplication
© 2021 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.
Feedback