Tool to find primitives of functions. Integration of a function is the calculation of all its primitives, the inverse of the derivative.

Primitives Functions - dCode

Tag(s) : Functions, Symbolic Computation

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!

A suggestion ? a feedback ? a bug ? an idea ? *Write to dCode*!

Tool to find primitives of functions. Integration of a function is the calculation of all its primitives, the inverse of the derivative.

The **primitive** of a function $ f $ defined over an interval $ I $ is a function $ F $ (usually noted in uppercase), defined and differentiable over $ I $, which derivative is $ f $, ie. $ F'(x) = f(x) $.

__Example:__ If $ f(x) = x^2+sin(x) $ then the **primitive** is $ F(x) = \frac{1}{3}x^3-cos(x) + C $ (with $ C $ a constant).

dCode knows all functions and their **primitives**. Enter the function and its variable to integrate and dCode do the computation of the **primitive** function.

Mathematicians use primitive/integration to find the function calculating the area under the curve.

Function | Primitive |
---|---|

$$ \int \,\rm dx $$ | $$ x + C $$ |

$$ \int x^n\,\rm dx $$ | $$ \frac{x^{n+1}}{n+1} + C \qquad n \ne -1 $$ |

$$ \int \frac{1}{x}\,\rm dx $$ | $$ \ln \left| x \right| + C \qquad x \ne 0 $$ |

$$ \int \frac{1}{x-a} \, \rm dx $$ | $$ \ln | x-a | + C \qquad x \ne a $$ |

$$ \int \frac{1}{(x-a)^n} \, \rm dx $$ | $$-\frac{1}{(n-1)(x-a)^{n-1}} + C \qquad n \ne 1 , x \ne a $$ |

$$ \int \frac{1}{1+x^2} \, \rm dx $$ | $$ \operatorname{arctan}(x) + C $$ |

$$ \int \frac{1}{a^2+x^2} \, \rm dx $$ | $$ \frac{1}{a}\operatorname{arctan}{ \left( \frac{x}{a} \right) } + C \qquad a \ne 0 $$ |

$$ \int \frac{1}{1-x^2} \, \rm dx $$ | $$ \frac{1}{2} \ln { \left| \frac{x+1}{x-1} \right| } + C $$ |

$$ \int \ln (x)\,\rm dx $$ | $$ x \ln (x) - x + C $$ |

$$ \int \log_b (x)\,\rm dx $$ | $$ x \log_b (x) - x \log_b (e) + C $$ |

$$ \int e^x\,\rm dx $ | $$ e^x + C $$ |

$$ \int a^x\,\rm dx $ | $$ \frac{a^x}{\ln (a)} + C \qquad a > 0 , a \ne 1 $$ |

$$ \int {1 \over \sqrt{1-x^2}} \, \rm dx $ | $$ \operatorname{arcsin} (x) + C $$ |

$$ \int {-1 \over \sqrt{1-x^2}} \, \rm dx $ | $$ \operatorname{arccos} (x) + C $$ |

$$ \int {x \over \sqrt{x^2-1}} \, \rm dx $ | $$ \sqrt{x^2-1} + C $$ |

$$ \int \sin(x)\,\rm dx $$ | $$ -\cos(x)+C $$ |

$$ \int \cos(x)\,\rm dx $$ | $$ \sin(x)+C $$ |

$$ \int \tan(x)\,\rm dx $$ | $$ -\ln|\cos(x)|+C $$ |

The **primitive** calculation of some functions within dCode calculator can involve the functions denoted $ F $ and $ E $ respectively first and second kind of elliptic integrals, or $ Ci $ and $ Si $ respectively Cosine Integral and Sine Integral, or $ Li_2 $ the Spence's function or $ B_x $ the Euler Beta function.

dCode retains ownership of the source code of the script Primitives Functions online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online Primitives Functions script for offline use on PC, iPhone or Android, ask for price quote on contact page !

primitive,integral,function,integration,integrate,calculus,derivative,antiderivative,calculator

Source : https://www.dcode.fr/primitive-integral

© 2020 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.

Feedback

▲