Search for a tool
Primitives Functions

Tool to find primitives of functions. Integration of a function is the calculation of all its primitives, the inverse of the derivative.

Results

Primitives Functions -

Tag(s) : Functions, Symbolic Computation

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our community Discord for help requests!


Thanks to your feedback and relevant comments, dCode has developed the best 'Primitives Functions' tool, so feel free to write! Thank you!

Primitives Functions

Sponsored ads

Primitive Function Calculator




See also: Derivative

Integral Calculator

Tool to find primitives of functions. Integration of a function is the calculation of all its primitives, the inverse of the derivative.

Answers to Questions

How to calculate a primitive/integral?

The primitive (indefinite integral) of a function $ f $ defined over an interval $ I $ is a function $ F $ (usually noted in uppercase), itself defined and differentiable over $ I $, which derivative is $ f $, ie. $ F'(x) = f(x) $.

Example: The primitive of $ f(x) = x^2+\sin(x) $ is the function $ F(x) = \frac{1}{3}x^3-\cos(x) + C $ (with $ C $ a constant).

dCode knows all functions and their primitives. Enter the function and its variable to integrate and dCode do the computation of the primitive function.

Mathematicians use primitive/integration to find the function calculating the area under the curve.

What is the list of common primitives?

FunctionPrimitive
constant $$ \int a \, \rm dx $$$$ ax + C $$
power $$ \int x^n \, \rm dx $$$$ \frac{x^{n+1}}{n+1} + C \qquad n \ne -1 $$
negative power $$ \int \frac{1}{x^n} = \int x^{-n} \, \rm dx $$$$ \frac{x^{-n+1}}{-n+1} + C \qquad n \ne 1 $$
inverse $$ \int \frac{1}{x} \, \rm dx $$$$ \ln \left| x \right| + C \qquad x \ne 0 $$
$$ \int \frac{1}{x-a} \, \rm dx $$$$ \ln | x-a | + C \qquad x \ne a $$
$$ \int \frac{1}{(x-a)^n} \, \rm dx $$$$-\frac{1}{(n-1)(x-a)^{n-1}} + C \qquad n \ne 1 , x \ne a $$
$$ \int \frac{1}{1+x^2} \, \rm dx $$$$ \operatorname{arctan}(x) + C $$
$$ \int \frac{1}{a^2+x^2} \, \rm dx $$$$ \frac{1}{a}\operatorname{arctan}{ \left( \frac{x}{a} \right) } + C \qquad a \ne 0 $$
$$ \int \frac{1}{1-x^2} \, \rm dx $$$$ \frac{1}{2} \ln { \left| \frac{x+1}{x-1} \right| } + C $$
$$ \int \frac{1}{\sqrt{1-x^2}} \, \rm dx $$$$ \operatorname{arcsin} (x) + C $$
$$ \int \frac{-1}{\sqrt{1-x^2}} \, \rm dx $$$$ \operatorname{arccos} (x) + C $$
$$ \int \frac{1}{\sqrt{x^2-1}} \, \rm dx $$$$ \sqrt{x^2-1} + C $$
natural logarithm $$ \int \ln (x)\,\rm dx $$$$ x \ln (x) - x + C $$
logarithm base b $$ \int \log_b (x)\,\rm dx $$$$ x \log_b (x) - x \log_b (e) + C $$
exponential $$ \int e^x\,\rm dx $$$$ e^x + C $$
$$ \int a^x\,\rm dx $$$$ \frac{a^x}{\ln (a)} + C \qquad a > 0 , a \ne 1 $$
sinus $$ \int \sin(x)\,\rm dx $$$$ -\cos(x)+C $$
cosinus $$ \int \cos(x)\,\rm dx $$$$ \sin(x)+C $$
tangent $$ \int \tan(x)\,\rm dx $$$$ -\ln|\cos(x)|+C $$

The primitive calculation of some functions within dCode calculator can involve elliptic integrals, Cosine Integral and Sine Integral, or Spence's function or Euler Beta function.

Source code

dCode retains ownership of the online 'Primitives Functions' tool source code. Except explicit open source licence (indicated CC / Creative Commons / free), any algorithm, applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (PHP, Java, C#, Python, Javascript, Matlab, etc.) no data, script or API access will be for free, same for Primitives Functions download for offline use on PC, tablet, iPhone or Android !

Need Help ?

Please, check our community Discord for help requests!

Questions / Comments

Thanks to your feedback and relevant comments, dCode has developed the best 'Primitives Functions' tool, so feel free to write! Thank you!


Source : https://www.dcode.fr/primitive-integral
© 2021 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.
Feedback