Tool to find primitives of functions. Integration of a function is the calculation of all its primitives, the inverse of the derivative.
Primitives Functions - dCode
Tag(s) : Functions, Symbolic Computation
dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!
Tool to find primitives of functions. Integration of a function is the calculation of all its primitives, the inverse of the derivative.
The primitive (indefinite integral) of a function $ f $ defined over an interval $ I $ is a function $ F $ (usually noted in uppercase), itself defined and differentiable over $ I $, which derivative is $ f $, ie. $ F'(x) = f(x) $.
Example: The primitive of $ f(x) = x^2+\sin(x) $ is the function $ F(x) = \frac{1}{3}x^3-\cos(x) + C $ (with $ C $ a constant).
dCode knows all functions and their primitives. Enter the function and its variable to integrate and dCode do the computation of the primitive function.
Mathematicians use primitive/integration to find the function calculating the area under the curve.
Function | Primitive |
---|---|
constant $$ \int a \, \rm dx $$ | $$ ax + C $$ |
power $$ \int x^n \, \rm dx $$ | $$ \frac{x^{n+1}}{n+1} + C \qquad n \ne -1 $$ |
negative power $$ \int \frac{1}{x^n} = \int x^{-n} \, \rm dx $$ | $$ \frac{x^{-n+1}}{-n+1} + C \qquad n \ne 1 $$ |
inverse $$ \int \frac{1}{x} \, \rm dx $$ | $$ \ln \left| x \right| + C \qquad x \ne 0 $$ |
$$ \int \frac{1}{x-a} \, \rm dx $$ | $$ \ln | x-a | + C \qquad x \ne a $$ |
$$ \int \frac{1}{(x-a)^n} \, \rm dx $$ | $$-\frac{1}{(n-1)(x-a)^{n-1}} + C \qquad n \ne 1 , x \ne a $$ |
$$ \int \frac{1}{1+x^2} \, \rm dx $$ | $$ \operatorname{arctan}(x) + C $$ |
$$ \int \frac{1}{a^2+x^2} \, \rm dx $$ | $$ \frac{1}{a}\operatorname{arctan}{ \left( \frac{x}{a} \right) } + C \qquad a \ne 0 $$ |
$$ \int \frac{1}{1-x^2} \, \rm dx $$ | $$ \frac{1}{2} \ln { \left| \frac{x+1}{x-1} \right| } + C $$ |
$$ \int \frac{1}{\sqrt{1-x^2}} \, \rm dx $$ | $$ \operatorname{arcsin} (x) + C $$ |
$$ \int \frac{-1}{\sqrt{1-x^2}} \, \rm dx $$ | $$ \operatorname{arccos} (x) + C $$ |
$$ \int \frac{1}{\sqrt{x^2-1}} \, \rm dx $$ | $$ \sqrt{x^2-1} + C $$ |
natural logarithm $$ \int \ln (x)\,\rm dx $$ | $$ x \ln (x) - x + C $$ |
logarithm base b $$ \int \log_b (x)\,\rm dx $$ | $$ x \log_b (x) - x \log_b (e) + C $$ |
exponential $$ \int e^x\,\rm dx $$ | $$ e^x + C $$ |
$$ \int a^x\,\rm dx $$ | $$ \frac{a^x}{\ln (a)} + C \qquad a > 0 , a \ne 1 $$ |
sinus $$ \int \sin(x)\,\rm dx $$ | $$ -\cos(x)+C $$ |
cosinus $$ \int \cos(x)\,\rm dx $$ | $$ \sin(x)+C $$ |
tangent $$ \int \tan(x)\,\rm dx $$ | $$ -\ln|\cos(x)|+C $$ |
The primitive calculation of some functions within dCode calculator can involve elliptic integrals, Cosine Integral and Sine Integral, or Spence's function or Euler Beta function.
dCode retains ownership of the online 'Primitives Functions' tool source code. Except explicit open source licence (indicated CC / Creative Commons / free), any algorithm, applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (PHP, Java, C#, Python, Javascript, Matlab, etc.) no data, script or API access will be for free, same for Primitives Functions download for offline use on PC, tablet, iPhone or Android !
Please, check our community Discord for help requests!