Search for a tool
Combination N Choose K

Tool to generate combinations. In mathematics, a choice of k elements out of n distinguishable objects (k choose n), where the order does not matter, is represented by a list of elements, which cardinal is the binomial coefficient.

Results

Combination N Choose K -

Tag(s) : Combinatorics

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Feedback and suggestions are welcome so that dCode offers the best 'Combination N Choose K' tool for free! Thank you!

Combination N Choose K

Combinations Generator


From the total number of items




From a custom list of items

Loading...
(if this message do not disappear, try to refresh this page)

Combinations with Order (1,2≠2,1)

⮞ Go to: K-Permutations — Permutations

Combinations with Repeated Items

Combinations Count Calculator



Combinations and Lottery Games

To get a list of combinations with a guaranteed minimum of numbers (also called reduced lottery draw), dCode has a tool for that:

To draw random numbers (Lotto, Euromillions, Superlotto, etc.)

See also: Random Selection — Random Numbers

Answers to Questions (FAQ)

What is a combination of n choose k? (Definition)

A combination of $ k $ among $ n $ is the name given to the number of distinct ways of choosing $ k $ elements among a set of $ n $ distinct elements (with $ n \ge k $), without taking into account the order.

The combination is denoted by $ _nC^k $ or $ \binom{n}{k} $.

How to generate combinations of n choose k?

The generator allows selection of values $ k $ and $ n $, and generates possible lists of combinations with digits or letters (or a custom list).

Example: 4 choose 2 generates: (1,2),(1,3),(1,4),(2,3),(2,4),(3,4)

The generation is intentionally limited to a few thousand combinations, because the number of results grows very rapidly with $ n $ and $ k $. This limit prevents any server overload.

To generate larger lists, dCode can generate them upon (paid) request.

How to count the number of combinations of n choose k?

The calculation uses the binomial coefficient: $$ C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!} $$

Combinations uses calculus of factorials (the exclamation mark: !).

3 choose 2 = 3 combinations(1,2) (1,3) (2,3)
4 choose 2 = 6 combinations(1,2) (1,3) (1,4) (2,3) (2,4) (3,4)
5 choose 2 = 10 combinations(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)
6 choose 2 = 15 combinations(1,2) (1,3) (1,4) (1,5) (1,6) (2,3) (2,4) (2,5) (2,6) (3,4) (3,5) (3,6) (4,5) (4,6) (5,6)
7 choose 2 = 21 combinations(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (2,3) (2,4) (2,5) (2,6) (2,7) (3,4) (3,5) (3,6) (3,7) (4,5) (4,6) (4,7) (5,6) (5,7) (6,7)
8 choose 2 = 28 combinations(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (3,4) (3,5) (3,6) (3,7) (3,8) (4,5) (4,6) (4,7) (4,8) (5,6) (5,7) (5,8) (6,7) (6,8) (7,8)
9 choose 2 = 36 combinations(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (1,9) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (2,9) (3,4) (3,5) (3,6) (3,7) (3,8) (3,9) (4,5) (4,6) (4,7) (4,8) (4,9) (5,6) (5,7) (5,8) (5,9) (6,7) (6,8) (6,9) (7,8) (7,9) (8,9)
4 choose 3 = 4 combinations(1,2,3) (1,2,4) (1,3,4) (2,3,4)
5 choose 3 = 10 combinations(1,2,3) (1,2,4) (1,2,5) (1,3,4) (1,3,5) (1,4,5) (2,3,4) (2,3,5) (2,4,5) (3,4,5)
6 choose 3 = 20 combinations(1,2,3) (1,2,4) (1,2,5) (1,2,6) (1,3,4) (1,3,5) (1,3,6) (1,4,5) (1,4,6) (1,5,6) (2,3,4) (2,3,5) (2,3,6) (2,4,5) (2,4,6) (2,5,6) (3,4,5) (3,4,6) (3,5,6) (4,5,6)
7 choose 3 = 35 combinations(1,2,3) (1,2,4) (1,2,5) (1,2,6) (1,2,7) (1,3,4) (1,3,5) (1,3,6) (1,3,7) (1,4,5) (1,4,6) (1,4,7) (1,5,6) (1,5,7) (1,6,7) (2,3,4) (2,3,5) (2,3,6) (2,3,7) (2,4,5) (2,4,6) (2,4,7) (2,5,6) (2,5,7) (2,6,7) (3,4,5) (3,4,6) (3,4,7) (3,5,6) (3,5,7) (3,6,7) (4,5,6) (4,5,7) (4,6,7) (5,6,7)
5 choose 4 = 5 combinations(1,2,3,4) (1,2,3,5) (1,2,4,5) (1,3,4,5) (2,3,4,5)
6 choose 4 = 15 combinations(1,2,3,4) (1,2,3,5) (1,2,3,6) (1,2,4,5) (1,2,4,6) (1,2,5,6) (1,3,4,5) (1,3,4,6) (1,3,5,6) (1,4,5,6) (2,3,4,5) (2,3,4,6) (2,3,5,6) (2,4,5,6) (3,4,5,6)
7 choose 4 = 35 combinations(1,2,3,4) (1,2,3,5) (1,2,3,6) (1,2,3,7) (1,2,4,5) (1,2,4,6) (1,2,4,7) (1,2,5,6) (1,2,5,7) (1,2,6,7) (1,3,4,5) (1,3,4,6) (1,3,4,7) (1,3,5,6) (1,3,5,7) (1,3,6,7) (1,4,5,6) (1,4,5,7) (1,4,6,7) (1,5,6,7) (2,3,4,5) (2,3,4,6) (2,3,4,7) (2,3,5,6) (2,3,5,7) (2,3,6,7) (2,4,5,6) (2,4,5,7) (2,4,6,7) (2,5,6,7) (3,4,5,6) (3,4,5,7) (3,4,6,7) (3,5,6,7) (4,5,6,7)
6 choose 5 = 6 combinations(1,2,3,4,5) (1,2,3,4,6) (1,2,3,5,6) (1,2,4,5,6) (1,3,4,5,6) (2,3,4,5,6)
7 choose 5 = 21 combinations(1,2,3,4,5) (1,2,3,4,6) (1,2,3,4,7) (1,2,3,5,6) (1,2,3,5,7) (1,2,3,6,7) (1,2,4,5,6) (1,2,4,5,7) (1,2,4,6,7) (1,2,5,6,7) (1,3,4,5,6) (1,3,4,5,7) (1,3,4,6,7) (1,3,5,6,7) (1,4,5,6,7) (2,3,4,5,6) (2,3,4,5,7) (2,3,4,6,7) (2,3,5,6,7) (2,4,5,6,7) (3,4,5,6,7)

How to take into account the order of the elements?

By principle, combinations do not take into account order (1,2) = (2,1). Use the function permutations to get possible ordered combinations.

How to get combinations with repetitions?

dCode has a dedicated tool for combinations with repetitions.

How many combinations is there to lottery/euromillions?

To calculate the probabilities of winning in games of chance such as drawing random games, combinations are the most suitable tools.

To win at EuroMillions, a player ticks 5 boxes out of 50 (50 choose 5), then 2 stars out of 11 (11 choose 2).

Example: Calculate the number of combinations of (50 choose 5) = 2 118 760, and multiply by (11 choose 2) = 55 for a total of 116 531 800 combinations. The probability of winning is therefore 1 in 116 million.

To win at Powerball, pick 5 out of 69 (69 choose 5), then pick 1 out of 26 (26 choose 1).

Example: Calculate the number of combinations of (69 choose 5) = 11 238 513, and multiply by (26 choose 1) = 26 for a total of 292 201 338 combinations. The probability of winning is therefore 1 in 292 million.

To win at EuroDreams, the draw is 6 numbers from 40, then 1 number from 5.

Example: Calculate the number of combinations of (40 choose 6) = 3 838 380, and multiply by (1 among 5) = 5, for a total of 19 191 900 combinations. The probability of winning is therefore 1 chance in 19 million.

Many books describes strategies for lotto or lottery such as here (affiliate link) One of the strategies is to play covering designs systems.

Why k cannot be equal to zero 0?

If $ k = 0 $, no element is selected. There is then only one possible combination: the empty set. By combinatorial convention, $$ \binom{n}{0} = 1 $$

Why n cannot be equal to zero 0?

If $ n = 0 $, then there is 0 item, impossible to pick $ k $, so there are no results. So $$ \binom{0}{k} = 0 $$

What is the value of 0 choose 0?

By convention 0 choose 0 is 1: $$ \binom{0}{0} = 1 $$

What is the algorithm for counting combinations?

To count the combinations: // Python
def count_combinations(n, k):
if k > n - k:
k = n - k
result = 1
for i in range(1, k + 1):
result = result * (n - i + 1) // i
return result

What is the algorithm to generate combinations?

To list the combinations: // Python
def combinations(n, k):
result = []
combo = list(range(k))
while True:
result.append(combo[:])
i = k - 1
while i >= 0 and combo[i] == n - k + i:
i -= 1
if i < 0:
break
combo[i] += 1
for j in range(i + 1, k):
combo[j] = combo[j - 1] + 1
return result
// JavaScript
function combinations(a) { // a = new Array(1,2)
var fn = function(n, src, got, all) {
if (n == 0) {
if (got.length > 0) {
all[all.length] = got;
}
return;
}
for (var j = 0; j < src.length; j++) {
fn(n - 1, src.slice(j + 1), got.concat([src[j]]), all);
}
return;
}
var all = [];
for (var i=0; i < a.length; i++) {
fn(i, a, [], all);
}
all.push(a);
return all;
}

Source code

dCode retains ownership of the "Combination N Choose K" source code. Any algorithm for the "Combination N Choose K" algorithm, applet or snippet or script (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or any "Combination N Choose K" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) or any database download or API access for "Combination N Choose K" or any other element are not public (except explicit open source licence). Same with the download for offline use on PC, mobile, tablet, iPhone or Android app.
Reminder: dCode is an educational and teaching resource, accessible online for free and for everyone.

Cite dCode

The content of the page "Combination N Choose K" and its results may be freely copied and reused, including for commercial purposes, provided that dCode.fr is cited as the source (Creative Commons CC-BY free distribution license).

Exporting the results is free and can be done simply by clicking on the export icons ⤓ (.csv or .txt format) or ⧉ (copy and paste).

To cite dCode.fr on another website, use the link: https://www.dcode.fr/combinations

In a scientific article or book, the recommended bibliographic citation is: Combination N Choose K on dCode.fr [online website], retrieved on 2026-01-30, https://www.dcode.fr/combinations

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Feedback and suggestions are welcome so that dCode offers the best 'Combination N Choose K' tool for free! Thank you!


https://www.dcode.fr/combinations
© 2026 dCode — The ultimate collection of tools for games, math, and puzzles.
â–˛  
Feedback