Tool for calculating logarithms with the logarithm function is denoted log or ln, defined by a base (the base e for the natural logarithm).

Logarithm - dCode

Tag(s) : Functions

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!

A suggestion ? a feedback ? a bug ? an idea ? *Write to dCode*!

The definition of the natural logarithm is the function whose derivative is the inverse function of $ x \mapsto \frac 1 x $ defined for $ x \in \mathbb{R}_+^* $.

The natural logarithm is noted `log` or `ln` and is based on the number $ e \approx 2.71828\ldots $ (see decimals of number e).

__Example:__ $ \log(7) = \ln(7) \approx 1.94591 $

Some people and bad calculators use $ \log $ for $ \log_{10} $, so make sure to know which notation is used. The dCode calculator always uses $ \log = \ln $.

Any base $ N $ logarithm can be calculated from a natural logarithm with the formula: $$ \log_{N}(x) = \frac {\ln(x)} {\ln(N)} $$

The neperian logarithm is the other name of the natural logarithm (with base e).

The decimal logarithm noted $ \log_{10} $ or `log10` is the base $ 10 $ logarithm. This is one of the most used logarithms in calculations and logarithmic scales. $$ \log_{10}(x) = \frac {\ln(x)} {\ln(10)} $$

__Example:__ $ \log_{10}(1000) = 3 $

The binary logarithm noted $ \log_{2} $ (or sometimes $ lb $) is the base $ 2 $ logarithm. This logarithm is used primarily for computer calculations. $$ \log_2(x) = \frac {\ln(x)} {\ln(2)} $$

Use the formula above to calculate a log2 with a calculator with only the log key.

Any logarithm has as for properties:

— $ \log_b(x \cdot y) = \log_b(x) +\log_b(y) $ (transformation of a product into a sum)

— $ \log_b \left( \frac{x}{y} \right) = \log_b(x) - \log_b(y) $ (transformation of a quotient into subtraction)

— $ \log_b (x^a) = a \log_b(x) $ (transformation of a power into a multiplication)

— $ \log_b(b) = 1 $

— $ \log(e) = \ln(e) = 1 $

— $ \log_{10}(10) = 1 $

— $ \log_b(1) = ln(1) = 0 $

— $ \log_b(b^n) = \ln(e^n) = n $ (inverse function of exponentiation)

dCode retains ownership of the "Logarithm" source code. Except explicit open source licence (indicated Creative Commons / free), the "Logarithm" algorithm, the applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or the "Logarithm" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and all data download, script, or API access for "Logarithm" are not public, same for offline use on PC, tablet, iPhone or Android !

The copy-paste of the page "Logarithm" or any of its results, is allowed as long as you cite the online source

Reminder : dCode is free to use.

- Logarithm Calculator Log(x)=?
- Logarithm Expression Simplifier
- Logarithm Solver Log(?)=x
- What is the natural logarithm? (Definition)
- How to turn a base N logarithm into a natural logarithm?
- What is the neperian logarithm?
- What is the decimal logarithm (log10)?
- What is the binary logarithm (log2)?
- Why the logaritm can transform product into sum?
- What are remarkable values of the logarithm function?

logarithm,log,log2,log10,ln,neper,neperian,natural

Source : https://www.dcode.fr/logarithm

© 2022 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.

Feedback