Tool to calculate the integral of a function. The computation of an definite integral over an interval consist in measuring the area under the curve of the function to integrate.
Definite Integral - dCode
Tag(s) : Functions, Symbolic Computation
dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!
To perform an integral calculation (integration), first, calculate the corresponding primitive function.
For a function $ f(x) $ to be integrated over $ [a;b] $ and $ F(x) $ the primitive of $ f(x) $. Then $$ \int^b_a f(x) \mathrm{ dx} = F(b)-F(a) $$
Example: Integrate $ f(x) = x $ over the interval $ [0;1] $. Calculate its primitive $ F(x) = \frac{1}{2} x^2 $ and so integral $$ \int^1_0 f(x) \mathrm {dx} = F(1) - F(0) = \frac{1}{2} $$
Enter the function, its lower and upper bounds and the variable to integrate, dCode will make the computation.
Function | Primitive |
---|---|
$$ \int \,\rm dx$$ | $$x + C$$ |
$$ \int x^n\,\rm dx$$ | $$ \frac{x^{n+1}}{n+1} + C \qquad n \ne -1 $$ |
$$ \int \frac{1}{x}\,\rm dx$$ | $$\ln \left| x \right| + C \qquad x \ne 0 $$ |
$$ \int \frac{1}{x-a} \, \rm dx $$ | $$\ln | x-a | + C \qquad x \ne a $$ |
$$ \int \frac{1}{(x-a)^n} \, \rm dx$$ | $$-\frac{1}{(n-1)(x-a)^{n-1}} + C \qquad n \ne 1 , x \ne a $$ |
$$ \int \frac{1}{1+x^2} \, \rm dx$$ | $$\operatorname{arctan}(x) + C $$ |
$$ \int \frac{1}{a^2+x^2} \, \rm dx$$ | $$\frac{1}{a}\operatorname{arctan}{ \left( \frac{x}{a} \right) } + C \qquad a \ne 0 $$ |
$$ \int \frac{1}{1-x^2} \, \rm dx$$ | $$\frac{1}{2} \ln { \left| \frac{x+1}{x-1} \right| } + C $$ |
$$ \int \ln (x)\,\rm dx$$ | $$x \ln (x) - x + C $$ |
$$ \int \log_b (x)\,\rm dx$$ | $$x \log_b (x) - x \log_b (e) + C $$ |
$$ \int e^x\,\rm dx$$ | $$e^x + C $$ |
$$ \int a^x\,\rm dx$$ | $$\frac{a^x}{\ln (a)} + C \qquad a > 0 , a \ne 1 $$ |
$$ \int {1 \over \sqrt{1-x^2}} \, \rm dx$$ | $$\operatorname{arcsin} (x) + C $$ |
$$ \int {-1 \over \sqrt{1-x^2}} \, \rm dx$$ | $$\operatorname{arccos} (x) + C $$ |
$$ \int {x \over \sqrt{x^2-1}} \, \rm dx$$ | $$\sqrt{x^2-1} + C $$ |
$$ \int \sin(x)\,\rm dx $$ | $$ -\cos(x)+C $$ |
$$ \int \cos(x)\,\rm dx $$ | $$ \sin(x)+C $$ |
$$ \int \tan(x)\,\rm dx $$ | $$ -\ln|\cos(x)|+C $$ |
Reminder: the derivative of the primitive of a function is the function itself.
Calculation of some forms of integrals involve special functions such as $ E $ and $ F $ which are elliptic integrals or $ I_0, I_n, J_0, J_n, K_0, K_n $ which are Bessel functions.
dCode retains ownership of the online 'Definite Integral' tool source code. Except explicit open source licence (indicated CC / Creative Commons / free), any 'Definite Integral' algorithm, applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any 'Definite Integral' function (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and no data download, script, copy-paste, or API access for 'Definite Integral' will be for free, same for offline use on PC, tablet, iPhone or Android ! dCode is free and online.
Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!
Thanks to your feedback and relevant comments, dCode has developed the best 'Definite Integral' tool, so feel free to write! Thank you!