Search for a tool
Definite Integral

Tool to calculate the integral of a function. The computation of an definite integral over an interval consist in measuring the area under the curve of the function to integrate.

Results

Definite Integral -

Tag(s) : Functions, Symbolic Computation

Share
Share
dCode and you

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our community Discord for help requests!


Thanks to your feedback and relevant comments, dCode has developped the best Definite Integral tool, so feel free to write! Thank you !

Definite Integral

Primitive Calculator

Definite Integral Calculator



Lower bound



Upper bound



Multiple Integral Calculator

Tool to calculate the integral of a function. The computation of an definite integral over an interval consist in measuring the area under the curve of the function to integrate.

Answers to Questions

How to calculate a definite integral over an interval?

To perform an integral calculation (integration), first, calculate the corresponding primitive function.

For a function $ f(x) $ to be integrated over $ [a;b] $ and $ F(x) $ the primitive of $ f(x) $. Then $$ \int^b_a f(x) \mathrm{ dx} = F(b)-F(a) $$

Example: Integrate $ f(x) = x $ over the interval $ [0;1] $. Calculate its primitive $ F(x) = \frac{1}{2} x^2 $ and so integral $$ \int^1_0 f(x) \mathrm {dx} = F(1) - F(0) = \frac{1}{2} $$

Enter the function, its lower and upper bounds and the variable to integrate, dCode will make the computation.

What is the list of common primitives?

FunctionPrimitive
$$ \int \,\rm dx$$$$x + C$$
$$ \int x^n\,\rm dx$$$$ \frac{x^{n+1}}{n+1} + C \qquad n \ne -1 $$
$$ \int \frac{1}{x}\,\rm dx$$$$\ln \left| x \right| + C \qquad x \ne 0 $$
$$ \int \frac{1}{x-a} \, \rm dx $$$$\ln | x-a | + C \qquad x \ne a $$
$$ \int \frac{1}{(x-a)^n} \, \rm dx$$$$-\frac{1}{(n-1)(x-a)^{n-1}} + C \qquad n \ne 1 , x \ne a $$
$$ \int \frac{1}{1+x^2} \, \rm dx$$$$\operatorname{arctan}(x) + C $$
$$ \int \frac{1}{a^2+x^2} \, \rm dx$$$$\frac{1}{a}\operatorname{arctan}{ \left( \frac{x}{a} \right) } + C \qquad a \ne 0 $$
$$ \int \frac{1}{1-x^2} \, \rm dx$$$$\frac{1}{2} \ln { \left| \frac{x+1}{x-1} \right| } + C $$
$$ \int \ln (x)\,\rm dx$$$$x \ln (x) - x + C $$
$$ \int \log_b (x)\,\rm dx$$$$x \log_b (x) - x \log_b (e) + C $$
$$ \int e^x\,\rm dx$$$$e^x + C $$
$$ \int a^x\,\rm dx$$$$\frac{a^x}{\ln (a)} + C \qquad a > 0 , a \ne 1 $$
$$ \int {1 \over \sqrt{1-x^2}} \, \rm dx$$$$\operatorname{arcsin} (x) + C $$
$$ \int {-1 \over \sqrt{1-x^2}} \, \rm dx$$$$\operatorname{arccos} (x) + C $$
$$ \int {x \over \sqrt{x^2-1}} \, \rm dx$$$$\sqrt{x^2-1} + C $$
$$ \int \sin(x)\,\rm dx $$$$ -\cos(x)+C $$
$$ \int \cos(x)\,\rm dx $$$$ \sin(x)+C $$
$$ \int \tan(x)\,\rm dx $$$$ -\ln|\cos(x)|+C $$

Reminder: the derivative of the primitive of a function is the function itself.

What are the functions E, F, I0, K0?

Calculation of some forms of integrals involve special functions such as $ E $ and $ F $ which are elliptic integrals or $ I_0, I_n, J_0, J_n, K_0, K_n $ which are Bessel functions.

Source code

dCode retains ownership of the online 'Definite Integral' tool source code. Except explicit open source licence (indicated CC / Creative Commons / free), any algorithm, applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (PHP, Java, C#, Python, Javascript, Matlab, etc.) no data, script or API access will be for free, same for Definite Integral download for offline use on PC, tablet, iPhone or Android !

Need Help ?

Please, check our community Discord for help requests!

Questions / Comments

Thanks to your feedback and relevant comments, dCode has developped the best Definite Integral tool, so feel free to write! Thank you !


Source : https://www.dcode.fr/definite-integral
© 2020 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.
Feedback