Search for a tool
Definite Integral

Tool to calculate the integral of a function. The computation of an definite integral over an interval consist in measuring the area under the curve of the function to integrate.

Results

Definite Integral -

Tag(s) : Functions, Symbolic Computation

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Thanks to your feedback and relevant comments, dCode has developed the best 'Definite Integral' tool, so feel free to write! Thank you!

Definite Integral

Primitive Calculator

Definite Integral Calculator



Lower bound



Upper bound



Multiple Integral Calculator

Answers to Questions (FAQ)

How to calculate a definite integral over an interval?

To perform an integral calculation (integration), first, calculate the corresponding primitive function.

For a function $ f(x) $ to be integrated over $ [a;b] $ and $ F(x) $ the primitive of $ f(x) $. Then $$ \int^b_a f(x) \mathrm{ dx} = F(b)-F(a) $$

Example: Integrate $ f(x) = x $ over the interval $ [0;1] $. Calculate its primitive $ F(x) = \frac{1}{2} x^2 $ and so integral $$ \int^1_0 f(x) \mathrm {dx} = F(1) - F(0) = \frac{1}{2} $$

Enter the function, its lower and upper bounds and the variable to integrate, dCode will make the computation.

What is the list of common primitives?

FunctionPrimitive
$$ \int \,\rm dx$$$$x + C$$
$$ \int x^n\,\rm dx$$$$ \frac{x^{n+1}}{n+1} + C \qquad n \ne -1 $$
$$ \int \frac{1}{x}\,\rm dx$$$$\ln \left| x \right| + C \qquad x \ne 0 $$
$$ \int \frac{1}{x-a} \, \rm dx $$$$\ln | x-a | + C \qquad x \ne a $$
$$ \int \frac{1}{(x-a)^n} \, \rm dx$$$$-\frac{1}{(n-1)(x-a)^{n-1}} + C \qquad n \ne 1 , x \ne a $$
$$ \int \frac{1}{1+x^2} \, \rm dx$$$$\operatorname{arctan}(x) + C $$
$$ \int \frac{1}{a^2+x^2} \, \rm dx$$$$\frac{1}{a}\operatorname{arctan}{ \left( \frac{x}{a} \right) } + C \qquad a \ne 0 $$
$$ \int \frac{1}{1-x^2} \, \rm dx$$$$\frac{1}{2} \ln { \left| \frac{x+1}{x-1} \right| } + C $$
$$ \int \ln (x)\,\rm dx$$$$x \ln (x) - x + C $$
$$ \int \log_b (x)\,\rm dx$$$$x \log_b (x) - x \log_b (e) + C $$
$$ \int e^x\,\rm dx$$$$e^x + C $$
$$ \int a^x\,\rm dx$$$$\frac{a^x}{\ln (a)} + C \qquad a > 0 , a \ne 1 $$
$$ \int {1 \over \sqrt{1-x^2}} \, \rm dx$$$$\operatorname{arcsin} (x) + C $$
$$ \int {-1 \over \sqrt{1-x^2}} \, \rm dx$$$$\operatorname{arccos} (x) + C $$
$$ \int {x \over \sqrt{x^2-1}} \, \rm dx$$$$\sqrt{x^2-1} + C $$
$$ \int \sin(x)\,\rm dx $$$$ -\cos(x)+C $$
$$ \int \cos(x)\,\rm dx $$$$ \sin(x)+C $$
$$ \int \tan(x)\,\rm dx $$$$ -\ln|\cos(x)|+C $$

Reminder: the derivative of the primitive of a function is the function itself.

What are the functions E, F, I0, K0?

Calculation of some forms of integrals involve special functions such as $ E $ and $ F $ which are elliptic integrals or $ I_0, I_n, J_0, J_n, K_0, K_n $ which are Bessel functions.

Source code

dCode retains ownership of the online "Definite Integral" tool source code. Except explicit open source licence (indicated CC / Creative Commons / free), any "Definite Integral" algorithm, applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any "Definite Integral" function (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and no data download, script, copy-paste, or API access for "Definite Integral" will be for free, same for offline use on PC, tablet, iPhone or Android ! dCode is free and online.

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Thanks to your feedback and relevant comments, dCode has developed the best 'Definite Integral' tool, so feel free to write! Thank you!


Source : https://www.dcode.fr/definite-integral
© 2021 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.
Feedback