Tool to calculate the integral of a function. The computation of an definite integral over an interval consist in measuring the area under the curve of the function to integrate.

Definite Integral - dCode

Tag(s) : Functions, Symbolic Computation

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!

A suggestion ? a feedback ? a bug ? an idea ? *Write to dCode*!

Sponsored ads

This page deals with integral calculation on an interval. For the general case, with infinite bounds, see the calculation of primitives.

See also: Primitives Functions

Tool to calculate the integral of a function. The computation of an definite integral over an interval consist in measuring the area under the curve of the function to integrate.

To perform an **integral** calculation (integration), first, calculate the corresponding primitive function.

For a function \( f(x) \) to be integrated over \( [a;b] \) and \( F(x) \) the primitive of \( f(x) \). Then $$ \int^b_a f(x) \mathrm{ dx} = F(b)-F(a) $$

Example: Integrate \( f(x) = x \) over the interval \( [0;1] \). Calculate its primitive \( F(x) = \frac{1}{2} x^2 \) and so **integral** $$ \int^1_0 f(x) \mathrm {dx} = F(1) - F(0) = \frac{1}{2} $$

Enter the function, its lower and upper bounds and the variable to integrate, dCode will make the computation.

Function | Primitive |
---|---|

$$ \int \,\rm dx$$ | $$x + C$$ |

$$ \int x^n\,\rm dx$$ | $$ \frac{x^{n+1}}{n+1} + C \qquad n \ne -1 $$ |

$$ \int \frac{1}{x}\,\rm dx$$ | $$\ln \left| x \right| + C \qquad x \ne 0 $$ |

$$ \int \frac{1}{x-a} \, \rm dx $$ | $$\ln | x-a | + C \qquad x \ne a $$ |

$$ \int \frac{1}{(x-a)^n} \, \rm dx$$ | $$-\frac{1}{(n-1)(x-a)^{n-1}} + C \qquad n \ne 1 , x \ne a $$ |

$$ \int \frac{1}{1+x^2} \, \rm dx$$ | $$\operatorname{arctan}(x) + C $$ |

$$ \int \frac{1}{a^2+x^2} \, \rm dx$$ | $$\frac{1}{a}\operatorname{arctan}{ \left( \frac{x}{a} \right) } + C \qquad a \ne 0 $$ |

$$ \int \frac{1}{1-x^2} \, \rm dx$$ | $$\frac{1}{2} \ln { \left| \frac{x+1}{x-1} \right| } + C $$ |

$$ \int \ln (x)\,\rm dx$$ | $$x \ln (x) - x + C $$ |

$$ \int \log_b (x)\,\rm dx$$ | $$x \log_b (x) - x \log_b (e) + C $$ |

$$ \int e^x\,\rm dx$$ | $$e^x + C $$ |

$$ \int a^x\,\rm dx$$ | $$\frac{a^x}{\ln (a)} + C \qquad a > 0 , a \ne 1 $$ |

$$ \int {1 \over \sqrt{1-x^2}} \, \rm dx$$ | $$\operatorname{arcsin} (x) + C $$ |

$$ \int {-1 \over \sqrt{1-x^2}} \, \rm dx$$ | $$\operatorname{arccos} (x) + C $$ |

$$ \int {x \over \sqrt{x^2-1}} \, \rm dx$$ | $$\sqrt{x^2-1} + C $$ |

$$ \int \sin(x)\,\rm dx $$ | $$ -\cos(x)+C $$ |

$$ \int \cos(x)\,\rm dx $$ | $$ \sin(x)+C $$ |

$$ \int \tan(x)\,\rm dx $$ | $$ -\ln|\cos(x)|+C $$ |

Reminder: the derivative of the primitive of a function is the function itself.

Calculation of some forms of integrals involve special functions such as $ E $ and $ F $ which are elliptic integrals or $ I_0, I_n, J_0, J_n, K_0, K_n $ which are Bessel functions.

dCode retains ownership of the source code of the script Definite Integral online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be given for free. To download the online Definite Integral script for offline use on PC, iPhone or Android, ask for price quote on contact page !

integral,function,integration,integrate,calculus,derivative,antiderivative,primitive

Source : https://www.dcode.fr/definite-integral

© 2019 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaches. dCode

Feedback

▲