Search for a tool
Polynomial Factorization

Tool for Factorization of a polynomial. Factorizing consists in expressing a polynomial as a product, so it can be it's canonical form.

Results

Polynomial Factorization -

Tag(s) : Symbolic Computation, Functions

Share
Share
dCode and you

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Team dCode likes feedback and relevant comments; to get an answer give an email (not published). It is thanks to you that dCode has the best Polynomial Factorization tool. Thank you.

Polynomial Factorization

Sponsored ads

Factorization of polynomials


Tool for Factorization of a polynomial. Factorizing consists in expressing a polynomial as a product, so it can be it's canonical form.

Answers to Questions

How to factorize a polynomial-like expression?

Factorizing a mathematical polynomial expression of degree $ n $ means to express it as a product of polynomial factors.

Among the polynomial factorization's methods, the simplest is to recognize a remarkable identity. Remarkables identities also apply with polynomials

Example: $ a^2+2ab+b^2 $ is a 2nd order polynomial that factorizes as $ (a+b)^2 $

Example: $ x^2+2x-a^2+1 $ is factorized $ (x-a+1)(x+a+1) $

Another method is to try variable values like $ x = 0, 1, -1, 2, -2 $, which are sometimes the polynomials roots and allow you to find solutions quickly.

Example: $ x^2-4 $ has the root $ -2 $ and $ 2 $ and thus can be factorized $ (x-2)(x+2) $

Do not confuse with the canonical form of a polynomial

What is a remarkable identity?

A remarkable identity is an equality demonstrated between two mathematical terms, which is common enough to be detectable and usable without further demonstration. The best known are those used in factoring polynomials of degree 2:

$$ (a+b)^2 = a^2 + 2ab + b^2 $$

$$ (a-b)^2 = a^2 - 2ab + b^2 $$

$$ (a+b)(a-b)=a^2 - b^2 $$

What is an irreducible polynomial?

Irreducible polynomials are polynomials which cannot be decomposed into a product of two non-constant polynomials.

1st Degree polynomials are always irreducible.

Source code

dCode retains ownership of the source code of the script Polynomial Factorization online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online Polynomial Factorization script for offline use on PC, iPhone or Android, ask for price quote on contact page !

Questions / Comments


Team dCode likes feedback and relevant comments; to get an answer give an email (not published). It is thanks to you that dCode has the best Polynomial Factorization tool. Thank you.


Source : https://www.dcode.fr/polynomial-factorization
© 2019 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaches. dCode
Feedback