Search for a tool
Triple Integral

Tool to calculate triple Integral. The calculation of three consecutive integral makes it possible to compute volumes for functions with three variables to integrate over a given interval.

Results

Triple Integral -

Tag(s) : Functions, Symbolic Computation

Share
Share
dCode and you

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Team dCode likes feedback and relevant comments; to get an answer give an email (not published). It is thanks to you that dCode has the best Triple Integral tool. Thank you.

Triple Integral

Sponsored ads

Triple Integral Calculator


First Integral








Second Integral








Third Integral








Tool to calculate triple Integral. The calculation of three consecutive integral makes it possible to compute volumes for functions with three variables to integrate over a given interval.

Answers to Questions

How to calculate a triple integral?

The triple integral calculation is equivalent to a calculation of three consecutive integrals from the innermost to the outermost.

$$ \iiint f(x,y,z) \text{ d}x\text{ d}y\text{ d}z = \int_{(x)} \left( \int_{(y)} \left( \int_{(x)} f(x,y) \text{ d}x \right) \text{ d}y \right) \text{ d}z $$

Example: Calculate the integral of $ f(x,y,z)=xyz $ over $ x \in [0,1] $, $ y \in [0,2] $ and $ z \in [0,3] $ $$ \int_{0}^{3} \int_{0}^{2} \int_{0}^{1} xyz \text{ d}x\text{ d}y\text{ d}z = \int_{0}^{3} \int_{0}^{2} \frac{y^2,z^2}{8} \text{ d}y\text{ d}z = \int_{0}^{3} \frac{z^2}{2} \text{ d}z = \frac{9}{2} $$

Enter the function to be integrated on dCode with the desired upper and lower bounds for each variable and the calculator automatically returns the result.

How to integrale with polar coordinates?

The cylindrical coordinates are often used to perform volume calculations via a triple integration by changing variables:

$$ \iiint f(x,y,z) \text{ d}x\text{ d}y\text{ d}z = \iiint f(r \cos(\theta), r\sin(\theta), z) r \text{ d}r\text{ d}\theta\text{ d}z $$

How to integrale with spherical coordinates?

The spherical coordinates are often used to perform volume calculations via a triple integration by changing variables:

$$ \iiint f(x,y,z) \text{ d}x\text{ d}y\text{ d}z = \iiint f(\rho \cos(\theta) \sin(\varphi), \rho \sin(\theta)\sin(\varphi), \rho \cos(\varphi) ) \rho^2 \sin(\varphi) \text{ d}\rho \text{ d}\theta \text{ d}\varphi $$

Source code

dCode retains ownership of the source code of the script Triple Integral online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online Triple Integral script for offline use on PC, iPhone or Android, ask for price quote on contact page !

Questions / Comments


Team dCode likes feedback and relevant comments; to get an answer give an email (not published). It is thanks to you that dCode has the best Triple Integral tool. Thank you.


Source : https://www.dcode.fr/triple-integral
© 2019 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaches. dCode
Feedback