Rechercher un outil
Point Stationnaire d'une Fonction

Outil pour trouver les points stationnaires d'une fonction. Un point stationnaire est soit un minimum, soit un extrémum soit un point d'inflection.

Résultats

Point Stationnaire d'une Fonction -

Catégorie(s) : Fonctions

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Point Stationnaire d'une Fonction', alors écrivez-nous c'est gratuit ! Merci !

Point Stationnaire d'une Fonction

Calculatrice de Points Stationnaires



Réponses aux Questions (FAQ)

Qu'est ce qu'un point stationnaire ? (Définition)

Définition : Un point stationnaire est un point d'une courbe (fonction) où le gradient est nul (la dérivée est égale à 0). Un point stationnaire est donc soit un maximum local, soit un minimum local ou soit un point d'inflexion.

Exemple : La courbe du polynome d'ordre 2 : $ x^2 $ a un minimum local en $ x=0 $ (qui est aussi le minimum global)

Exemple : Le trinome $ x^3 $ a un point d'inflexion en $ x=0 $

Comment calculer les points stationnaires ?

Calculer la dérivée $ f' $ de la fonction $ f $ et regarder les valeurs pour lesquelles elle s'annule $ f'(x) = 0 $

Si elle change de signe de positif à négatif, alors c'est un maximum local.

Si elle change de signe de négatif à positif, alors c'est un minimum local.

Si elle ne change pas de signe, alors c'est un point d'inflexion.

La dérivée doit être dérivable en ce point (vérifier le domaine de dérivabilité).

Qu'est ce qu'un point tournant ?

Un point tournant est un point de la courbe où la dérivée change de signe donc soit un minimum local soit un maximum local.

Code source

dCode se réserve la propriété du code source de l'outil 'Point Stationnaire d'une Fonction' en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), tout algorithme pour 'Point Stationnaire d'une Fonction', applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction liée à 'Point Stationnaire d'une Fonction' (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codé en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) aucune donnée, téléchargement, script, copier-coller, ou accès API à 'Point Stationnaire d'une Fonction' ne sera cédé gratuitement, idem pour un usage hors ligne, PC, tablette, appli iPhone ou Android ! dCode est gratuit est en ligne.

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Point Stationnaire d'une Fonction', alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/point-stationaire-fonction
© 2021 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?