Outil pour calculer la période d'une fonction. La période d'une fonction est la plus petite valeur t telle que la fonction se répête f(x+t)=f(x-t)=f(x), ce qui est le cas des fonctions trigo (cos, sin, etc.).
Période d'une Fonction - dCode
Catégorie(s) : Fonctions
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !
Outil pour calculer la période d'une fonction. La période d'une fonction est la plus petite valeur t telle que la fonction se répête f(x+t)=f(x-t)=f(x), ce qui est le cas des fonctions trigo (cos, sin, etc.).
La période $ t $ d'une fonction périodique $ f(x) $ est la valeur $ t $ telle que $$ f(x+t)=f(x) $$
Graphiquement, sa courbe se reproduit chaque période, par translation. La fonction est égale à elle-même toutes les longueurs $ t $ (elle présente un motif qui se répète par translation).
La valeur de la période $ t $ est aussi appelée périodicité d'une fonction.
Pour trouver la période $ t $ d'une fonction périodique $ f(x) $, montrer que $$ f(x+t)=f(x) $$
Exemple : La fonction trigonométrique $ \sin(x + 2\pi) = \sin(x) $ donc $ \sin(x) $ est périodique de période $ 2\pi $
Les fonctions trigonométriques sont généralement périodiques de période $ 2\pi $, pour deviner la valeur de $ t $, envisager des multiples de pi pour la valeur $ t $.
Si la période est nulle (égale à $ 0 $), alors la fonction n'est pas périodique.
Toute fonction périodique de période $ t $ se répète toutes les $ t $ valeurs. Pour prédire la valeur d'une fonction périodique, pour une valeur $ x $ calculer $ x_t = x \mod t $ (modulo t) et rechercher la valeur connue de $ f(x_t) = f(x) $
Exemple : La fonction $ f(x) = \cos(x) $ a une période de $ 2\pi $, la valeur pour $ x = 9\pi $ est la même que pour $ x \equiv 9\pi \mod 2\pi \equiv \pi \mod 2\pi $ et donc $ \cos(9\pi) = \cos(\pi) = -1 $
L'amplitude correspond à la valeur absolue de la partie non périodique de la fonction.
Exemple : $ a \sin(x) $ a pour amplitude $ | a | $
Si $ f $ est périodique alors il existe un réel non nul tel que $$ f(x+t)=f(x) $$
La démonstration consiste à montrer que c'est impossible. Par exemple via un raisonnement par l'absurde ou en réalisant un calcul qui débouche sur une contradiction.
Les fonctions périodiques les plus courantes sont les fonctions trigonométriques à base de fonctions sinus et cosinus (qui ont une période de 2 Pi).
Période de Sinus $ \sin(x) $ | $ 2\pi $ |
Période de Cosinus $ \cos(x) $ | $ 2\pi $ |
Période de Tangente $ \tan(x) $ | $ \pi $ |
dCode se réserve la propriété du code source de l'outil 'Période d'une Fonction' en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), tout algorithme, applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction (convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codé en langage informatique (PHP, Java, C#, Python, Javascript, Matlab, etc.) aucune donnée, script ou accès API ne sera cédé gratuitement, idem pour télécharger Période d'une Fonction pour un usage hors ligne, PC, tablette, appli iPhone ou Android !
Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !