Tool to find the stationary points of a function. A stationary point is either a minimum, an extremum or a point of inflection.
Stationary Point of a Function - dCode
Tag(s) : Functions
dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!
Definition: A stationary point (or critical point) is a point on a curve (function) where the gradient is zero (the derivative is équal to 0). A stationary point is therefore either a local maximum, a local minimum or an inflection point.
Example: The curve of the order 2 polynomial $ x ^ 2 $ has a local minimum in $ x = 0 $ (which is also the global minimum)
Example: $ x ^ 3 $ has an inflection point in $ x = 0 $
Calculate the derivative $ f' $ of the function $ f $ and look at the values for which it is canceled $ f'(x) = 0 $
If it changes sign from positive to negative, then it is a local maximum.
If it changes sign from negative to positive, then it is a local minimum.
If it does not change sign, then it is an inflection point.
The derivative must be differentiable at this point (check the derivability domain).
A turning point is a point on the curve where the derivative changes sign so either a local minimum or a local maximum.
dCode retains ownership of the "Stationary Point of a Function" source code. Any algorithm for the "Stationary Point of a Function" algorithm, applet or snippet or script (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or any "Stationary Point of a Function" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) or any database download or API access for "Stationary Point of a Function" or any other element are not public (except explicit open source licence). Same with the download for offline use on PC, mobile, tablet, iPhone or Android app.
Reminder: dCode is an educational and teaching resource, accessible online for free and for everyone.
The content of the page "Stationary Point of a Function" and its results may be freely copied and reused, including for commercial purposes, provided that dCode.fr is cited as the source (Creative Commons CC-BY free distribution license).
Exporting the results is free and can be done simply by clicking on the export icons ⤓ (.csv or .txt format) or ⧉ (copy and paste).
To cite dCode.fr on another website, use the link:
In a scientific article or book, the recommended bibliographic citation is: Stationary Point of a Function on dCode.fr [online website], retrieved on 2025-06-15,