Rechercher un outil
Fonction Décroissante

Outil pour calculer si une fonction est décroissante/monotone ou sur quel intervalle est décroissante ou strictement décroissante.

Résultats

Fonction Décroissante -

Catégorie(s) : Fonctions

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Fonction Décroissante', alors écrivez-nous c'est gratuit ! Merci !

Fonction Décroissante

Calcul de Fonction Décroissante





Outil pour calculer si une fonction est décroissante/monotone ou sur quel intervalle est décroissante ou strictement décroissante.

Réponses aux Questions

Qu'est ce qu'une fonction décroissante ?

Une fonction $ f $ est strictement décroissante si pour tout $$ x_1 < x_2 , f(x_1) > f(x_2) $$ (inversion des signes)

Autrement dit, $ f $ a un sens de variation décroissant, lorsque $ x $ augmente, $ f(x) $ diminue (pas forcément de la même quantité).

Une fonction est décroissante (non strictement, au sens large) si pour tout $$ x_1 < x_2 , f(x_1) \geq f(x_2) $$

Exemple : La fonction $ f(x) = x+1 $ est décroissante sur tout son ensemble de définition $ \mathbb{R} $

La décroissance d'une fonction peut être également définie sur un intervalle.

Exemple : La fonction $ f(x) = x^2 $ est strictement décroissante sur $ \mathbb{R}^- $ aussi noté $ x < 0 $ ou encore $ ] -\infty ; 0 [ $

Comment déterminer si une fonction est décroissante ?

Plusieurs méthodes permettent de trouver le sens de variation pour savoir si une fonction est décroissante :

- A partir de sa dérivée : Lorsque la dérivée de la fonction est inférieure à $ 0 $ alors la fonction est décroissante.

Exemple : La dérivée de la fonction $ f(x) = x^2+1 $ est $ f'(x) = 2x $, le calcul de $ f'(x) < 0 $ donne $ x < 0 $ donc la fonction $ f $ est décroissante lorsque $ x < 0 $

- A partir de son équation : Certaines fonctions sont notoirement décroissantes : la fonction inverse, l'opposé des fonctions croissantes, etc.

Exemple : $ \frac{1}{x} $ est décroissante sur $ \mathbb{R}^* $

- A partir de la courbe de la fonction : une fonction décroissante a sa courbe qui se dirige vers le bas.

Comment déterminer si une fonction linéaire/affine est décroissante ?

Une fonction linéaire de la forme $ f(x) = ax+b $ est décroissante sur $ \mathbb{R} $ lorsque le coefficient $ a $ est négatif ($ a < 0 $). Si $ a $ est positif alors la fonction est croissante.

Code source

dCode se réserve la propriété du code source de l'outil 'Fonction Décroissante' en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), tout algorithme, applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction (convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codé en langage informatique (PHP, Java, C#, Python, Javascript, Matlab, etc.) aucune donnée, script ou accès API ne sera cédé gratuitement, idem pour télécharger Fonction Décroissante pour un usage hors ligne, PC, tablette, appli iPhone ou Android !

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Fonction Décroissante', alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/fonction-decroissante
© 2021 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?