Rechercher un outil
Interpolation de Neville

Outil pour retrouver une d'équation de courbe via l'algorithme de Neville-Aikten. L'interpolation par polynomes de Neville est une approximation polynomiale permettant d'obtenir l'équation d'une courbe en connaissant des points par lesquels passe celle-ci.

Résultats

Interpolation de Neville -

Catégorie(s) : Fonctions

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Interpolation de Neville', alors écrivez-nous c'est gratuit ! Merci !

Interpolation de Neville

Interpolation de Polynome par Neville


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Extrapolation


Réponses aux Questions (FAQ)

Comment retrouver l'équation d'une courbe avec l'algorithme de Neville ?

dCode permet d'utiliser la méthode de Neville pour l'Interpolation de Polynome afin de retrouver une équation en connaissant certains de ses points $ (x_i,y_i) $.

Exemple : Les points (0,0),(2,4),(4,16) peuvent être interpolé pour retrouver l'équation x^2

Les polynômes sont calculés via l'algorithme de Neville pour n points distincts:

- Créer les polynomes $ P_i $ de degré 0 pour les points $ x_i, y_i $ avec $ i=1,2,...,n $, celà revient à prendre $ P_i(x)=y_i $.

Exemple : $ P_1 = 0 $, $ P_2 = 4 $, $ P_3 = 16 $

- Pour chaque $ P_i $ et $ P_j $ consécutifs, calculer $$ P_{ij}(x) = \frac{(x_j-x)P_i(x) + (x-x_i)P_j(x)}{x_j-x_i} $$

Exemple : $ P_{12} = \frac{(2-x)0 + (x-0)4}{2-0} = 2x $, $ P_{23} = \frac{(4-x)4 + (x-2)16}{4-2} = \frac{16-4x+16x-32}{2} = 6x-8 $

- Répéter l'opération jusqu'à obtenir un unique polynome. (Cet algorithme peut être représenté comme une pyramide, à chaque étape un terme disparait jusqu'à obtenir un unique résultat final)

Exemple : $ P_{1(2)3} = \frac{(4-x)(2x) + (x-0)(6x-8)}{4-0} = \frac{8x-2x^2 + 6x^2 -8x}{4} = x^2 $

Quelles sont les limites de l'Interpolation par Neville ?

Les calculs sont longs, le programme est limité à 25 points avec des ordonnées distinctes dans l'ensemble Q.

Code source

dCode se réserve la propriété du code source de l'outil 'Interpolation de Neville' en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), tout algorithme pour 'Interpolation de Neville', applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction liée à 'Interpolation de Neville' (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codé en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) aucune donnée, téléchargement, script, copier-coller, ou accès API à 'Interpolation de Neville' ne sera cédé gratuitement, idem pour un usage hors ligne, PC, tablette, appli iPhone ou Android ! dCode est gratuit est en ligne.

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Interpolation de Neville', alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/neville-interpolation-polynome
© 2021 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?