Tool to find a curve equation via the Neville-Aikten algorithm. The Neville interpolating polynomial method is a polynomial approximation to obtain the equation of a curve by knowing some coordinates of it.

Neville Interpolating Polynomial - dCode

Tag(s) : Functions

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!

A suggestion ? a feedback ? a bug ? an idea ? *Write to dCode*!

dCode implement the method of Neville for Polynomial interpolation to find an equation by knowing some of its points $ (x_i, y_i) $.

__Example:__ Points `(0,0),(2,4),(4,16)` can be interpolated to find the original equation : `x^2`

The interpolated polynomial is calculated by the Neville algorithm for n distinct points. (This algorithm can be represented as a pyramid, at each step a term disappears until having a single final result).

— Create polynomials $ P_i $ of degree 0 for each point $ x_i, y_i $ with $ i = 1,2,...,n $, this is equivalent to $ P_i (x) = y_i $.

__Example:__ $ P_1 = 0 $, $ P_2 = 4 $, $ P_3 = 16 $

— For each consecutive $ P_i $ and $ P_j $ calculate $$ P_{ij}(x) = \frac{(x_j-x)P_i(x) + (x-x_i)P_j(x)}{x_j-x_i} $$

__Example:__ $ P_{12} = \frac{(2-x)0 + (x-0)4}{2-0} = 2x $, $ P_{23} = \frac{(4-x)4 + (x-2)16}{4-2} = \frac{16-4x+16x-32}{2} = 6x-8 $

— Repeat this last step until having a single polynomial.

__Example:__ $ P_{1(2)3} = \frac{(4-x)(2x) + (x-0)(6x-8)}{4-0} = \frac{8x-2x^2 + 6x^2 -8x}{4} = x^2 $

Calculations are costful so the program is limited to 25 points with distinct x-coordinate in the set Q.

dCode retains ownership of the "Neville Interpolating Polynomial" source code. Except explicit open source licence (indicated Creative Commons / free), the "Neville Interpolating Polynomial" algorithm, the applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or the "Neville Interpolating Polynomial" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and all data download, script, or API access for "Neville Interpolating Polynomial" are not public, same for offline use on PC, mobile, tablet, iPhone or Android app!

Reminder : dCode is free to use.

The copy-paste of the page "Neville Interpolating Polynomial" or any of its results, is allowed (even for commercial purposes) as long as you credit dCode!

Exporting results as a .csv or .txt file is free by clicking on the *export* icon

Cite as source (bibliography):

*Neville Interpolating Polynomial* on dCode.fr [online website], retrieved on 2024-09-14,

neville,aikten,interpolating,interpolation,equation,polynomial,curve,dot,value,function

https://www.dcode.fr/neville-interpolating-polynomial

© 2024 dCode — El 'kit de herramientas' definitivo para resolver todos los juegos/acertijos/geocaching/CTF.

Feedback