Rechercher un outil
Factorisation d'un Polynome

Outil de factorisation d'un polynome. Factoriser consiste à écrire le polynome sous la forme d'un produit, il peut s'agir de la forme canonique du polynome.

Résultats

Factorisation d'un Polynome -

Catégorie(s) : Calcul Formel, Fonctions

Partager
Partager
dCode et vous

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil de Factorisation d'un Polynome, alors écrivez-nous c'est gratuit ! Merci !

Factorisation d'un Polynome

Annonces sponsorisées

Factorisation d'un polynome





Outil de factorisation d'un polynome. Factoriser consiste à écrire le polynome sous la forme d'un produit, il peut s'agir de la forme canonique du polynome.

Réponses aux Questions

Comment factoriser une expression de type polynôme ?

Factoriser une expression polynomiale de degré $ n $ revient à l'exprimer en produit de facteurs polynomiaux.

Parmi les méthodes de factorisation de polynôme, la plus facile est de reconnaitre une identité remarquable. Les identités remarquables s'appliquent aussi avec les polynomes

Exemple : $ a^2+2ab+b^2 $ est un polynôme de degré 2 qui se factorise en $ (a+b)^2 $

Exemple : $ x^2+2x-a^2+1 $ se factorise $ (x-a+1)(x+a+1) $

Une autre méthode est d'essayer les valeurs de variable $ x = 0, 1, -1, 2, -2 $, qui sont parfois racines du polynomes et permettent de trouver des solutions rapidement.

Exemple : $ x^2-4 $ a pour racine $ -2 $ et $ 2 $ et se factorise $ (x-2)(x+2) $

Ne pas confondre avec la forme canonique d'un polynôme

Qu'est ce qu'une identité remarquable ?

Une identité remarquable est une égalité démontrée entre 2 termes mathématiques, qui est suffisamment courante pour être détectable et utilisable sans nouvelle démonstration. Les plus connues sont celles utilisées dans la factorisation des polynomes de degré 2 :

$$ (a+b)^2 = a^2 + 2ab + b^2 $$

$$ (a-b)^2 = a^2 - 2ab + b^2 $$

$$ (a+b)(a-b)=a^2 - b^2 $$

Qu'est ce qu'un polynome irréductible ?

Les polynômes dits irréductibles sont des polynômes qui ne peuvent se factoriser en produit de deux polynômes.

Les polynômes de premier degré sont irréductibles.

Code source

dCode se réserve la propriété du code source de l'outil 'Factorisation d'un Polynome' en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), tout algorithme, applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction (convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codé en langage informatique (PHP, Java, C#, Python, Javascript, Matlab, etc.) aucune donnée, script ou accès API ne sera cédé gratuitement, idem pour télécharger Factorisation d'un Polynome pour un usage hors ligne, PC, tablette, appli iPhone ou Android !

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil de Factorisation d'un Polynome, alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/factorisation-polynome
© 2020 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?