Rechercher un outil
Développement Limité

Outil pour calculer des développements limités (Taylor, etc.) permettant une approximation de fonction ou d'expression mathématiques.

Résultats

Développement Limité -

Catégorie(s) : Fonctions

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Développement Limité', alors écrivez-nous c'est gratuit ! Merci !

Développement Limité

Calculatrice de Développement Limité





Outil pour calculer des développements limités (Taylor, etc.) permettant une approximation de fonction ou d'expression mathématiques.

Réponses aux Questions

Comment calculer un développement limité ?

Pour calculer un développement limité (DL) d'ordre $ n $ d'une fonction $ f(x) $ au voisinage d'une valeur $ a $, si la fonction est dérivable en $ a $, alors il est possible d'utiliser la formule de Taylor-Young qui décompose toute fonction en :

$$ f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f^{(2)}(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^{n} + O(x^{n+1}) \\ = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} + O(x^{n+1}) $$

avec $ O(x^n) $ la notation asymptotique de Landau indiquant la précision, valeur tendant à être négligeable par rapport à $ (x – a)^n $ au voisinage de $ a $.

Exemple : La fonction exponentielle (ayant une dérivée nième facile à calculer) a pour développement limité en $ 0 $ : $ \exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + O(x^n) $$

Quels sont les développements limités des fonctions usuelles ?

Voici un formulaire des DL usuels à connaitre :

$ \exp(x) = $$$ \sum_{n=0}^{\infty} \frac{x^n}{n!} \\ = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + O(x^n+1) $$
$ \ln(1-x) = $$$ -\sum_{n=1}^{\infty} \frac{x^n}{n} \\ = -x- \frac{x^2}{2} - \frac{x^3}{3} - \cdots - \frac{x^n}{n} + O(x^n+1) $$
$ \ln(1+x) = $$$ \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} \\ = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots + (-1)^{n+1} \frac{x^n}{n} + O(x^n+1) $$
$ (1+x)^a = $$$ \sum_{n=0}^{\infty}\binom{a}{n} x^n = \sum_{n=0}^{\infty} x^n \prod _{k=1}^{n}{\frac {\alpha -k+1}{k}} \\ = 1 + ax + \frac{a(a-1)}{2!}x^2 + \frac{a(a-1)(a-2)}{3!}x^3 + \cdots + \frac{a(a-1)(a-2)\cdots(a-n+1)}{n!}x^n + O(x^n+1) $$
$ (1+x)^{1/2} = \\ \sqrt{1+x} = $$$ 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \frac{7}{256}x^5 + \cdots $$
$ (1+x)^{-1/2} = \\ \frac{1}{\sqrt{1+x}} = $$$ 1 -\frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \frac{63}{256}x^5 + \cdots $$
$ \frac{1}{1+x} = $$$ \sum_{n=0}^{\infty} (-1)^n x^n \\ = 1 - x + x^2 - x^3 + \cdots + (-1)^n x^n + O(x^n) $$
$ \frac{1}{(1+x)^2} = $$$ \sum_{n=0}^{\infty} (-1)^n nx^{n-1} \\ = 1 - 2x + 3x^2 - \cdots + (-1)^n nx^{n-1} + O(x^n) $$
$ \frac{1}{1-x} = $$$ \sum_{n=0}^{\infty} x^{n} \\ = 1 + x + x^2 + \cdots + x^n + O(x^n) $$
$ \frac{1}{(1-x)^2} = $$$ \sum_{n=1}^{\infty} nx^{n-1} \\ = 1 + 2x + 3x^2 + \cdots + nx^{n-1} + O(x^n) $$
$ \cos(x) = $$$ \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n)!} x^{2n} \\ = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots + \frac{(-1)^n}{(2n)!} x^{2n} + O(x^{2n+1}) $$
$ \sin(x) = $$$ \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \\ = x - \frac{x^3}{3!} + \frac{x^{5}}{5!} - \cdots + \frac{(-1)^n}{(2n+1)!} x^{2n+1} + O(x^{2n+2}) $$
$ \tan(x) = $$$ \sum^{\infty}_{n=1} \frac{B_{2n} (-4)^n (1-4^n)}{(2n)!} x^{2n-1} \\ = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \cdots + \frac{B_{2n}(-4)^n(1-4^n)}{(2n)!} x^{2n-1} + O(x^{2n}) $$
$ \sec(x) = $$$ \sum^{\infty}_{n=0} \frac{(-1)^n E_{2n}}{(2n)!} x^{2n} \\ = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \cdots + \frac{(-1)^n E_{2n}}{(2n)!} x^{2n} + O(x^{2n+1}) $$
$ \arccos(x) = $$$ \frac{\pi}{2} - \sum^{\infty}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1} \\ = \frac{\pi}{2} - x - \frac{x^3}{2 \times 3} - \frac{1 \times 3 \times x^5}{2 \times 4 \times 5} - \cdots - \frac{1 \times 3 \times 5 \cdots (2n-1)x^{2n+1}}{2 \times 4 \times 6 \cdots (2n) \times (2n+1)} + O(x^{2n+2}) $$
$ \arcsin(x) = $$$ \sum^{\infty}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1} \\ = x + \frac{x^3}{2 \times 3} + \frac{1 \times 3 \times x^5}{2 \times 4 \times 5} + \cdots + \frac{1 \times 3 \times 5 \cdots (2n-1)x^{2n+1}}{2 \times 4 \times 6 \cdots (2n) \times (2n+1)} + O(x^{2n+2}) $$
$ \arctan(x) = $$$ \sum^{\infty}_{n=0} (-1)^{n}\frac{x^{2n+1}}{2n+1} \\ = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots + (-1)^{n}\frac{x^{2n+1}}{2n+1} + O(x^{2n+2}) $$
$ \cosh(x) = $$$ \sum^{\infty}_{n=0} \frac{x^{2n}}{(2n)!} \\ = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots + \frac{x^{2n}}{(2n)!} + O(x^{2n+1}) $$
$ \sinh(x) = $$$ \sum^{\infty}_{n=0} \frac{x^{2n+1}}{(2n+1)!} \\ = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots + \frac{x^{2n+1}}{(2n+1)!} + O(x^{2n+2}) $$
$ \tanh(x) = $$$ \sum^{\infty}_{n=1} \frac{B_{2n} 4^n \left(4^n-1\right)}{(2n)!} x^{2n-1} \\ = x - \frac{x^3}{3} + \frac{2x^5}{15} - \frac{17x^7}{315} + \cdots + \frac{B_{2n} 4^n (4^{n}-1)}{(2n)!} x^{2n-1} + O(x^{2n}) $$
$ \operatorname{asinh}(x) = $$$ \sum^{\infty}_{n=0} \frac{(-1)^n (2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1} \\ = x - \frac{x^3}{2 \times 3} + \cdots +(-1)^{n} \frac{1 \times 3 \times 5 \cdots (2n-1)x^{2n+1}}{2 \times 4 \times 6 \cdots (2n) \times (2n+1)} + O(x^{2n+2}) $$
$ \operatorname{atanh}(x) = $$$ \sum^{\infty}_{n=0} \frac{x^{2n+1}}{2n+1} \\ = x + \frac{x^3}{3} + \cdots + \frac{x^{2n+1}}{2n+1} + O(x^{2n+2}) $$

NB: $ B_n $ sont les nombres de Bernoulli et $ E_n $ sont les nombres d'Euler

Code source

dCode se réserve la propriété du code source de l'outil 'Développement Limité' en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), tout algorithme, applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction (convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codé en langage informatique (PHP, Java, C#, Python, Javascript, Matlab, etc.) aucune donnée, script ou accès API ne sera cédé gratuitement, idem pour télécharger Développement Limité pour un usage hors ligne, PC, tablette, appli iPhone ou Android !

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Développement Limité', alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/developpement-limite
© 2021 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?