Outil pour calculer des développements limités (DL), séries de Taylor et approximations polynomiales d'une fonction au voisinage d'un point, avec gestion du reste (notation de Landau), fonctions usuelles intégrées.
Développement Limité - dCode
Catégorie(s) : Fonctions
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !
En mathématiques, un développement limité (DL) d'une fonction $ f $ au voisinage d'un point $ a $ est une écriture de la forme $$ f(x) = P_n(x-a) + O(x^{n+1}) $$ avec $ P_n $ un polynôme de degré inférieur ou égal à $ n $, et $ O(x^{n+1}) $ un reste négligeable devant $ (x-a)^n $ au voisinage de $ a $
Un développement limité d'ordre $ n $ fournit donc la meilleure approximation polynomiale locale de la fonction jusqu'au terme de degré $ n $. Plus l'ordre est élevé, plus l'approximation est précise près de $ a $.
Pour calculer un développement limité d'ordre $ n $ d'une fonction $ f(x) $ au voisinage d'un point $ a $, la fonction doit être $ n $ fois dérivable au voisinage de $ a $. La formule de Taylor-Young donne alors :
$$ f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f^{(2)}(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^{n} + O(x^{n+1}) \\ = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} + O(x^{n+1}) $$
avec $ O(x^n) $ la notation asymptotique de Landau indiquant la précision, valeur tendant à être négligeable par rapport à $ (x-a)^n $ au voisinage de $ a $.
Exemple : La fonction exponentielle (ayant une dérivée nième facile à calculer) a pour développement limité en $ 0 $ : $$ \exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + O(x^n) $$
Les développements suivants sont valables au voisinage de $ 0 $, voici une liste des DL usuels à connaitre.
— Fonction exponentielle (exp) et fonctions logarithmes (ln ou log) :
$$ \begin{aligned} \exp(x) &= \sum_{n=0}^{\infty} \frac{x^n}{n!} \\ &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + O(x^n+1) \\ \ln(1-x) &= -\sum_{n=1}^{\infty} \frac{x^n}{n} \\ &= -x- \frac{x^2}{2} - \frac{x^3}{3} - \cdots - \frac{x^n}{n} + O(x^n+1) \\ \ln(1+x) &= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} \\ &= x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots + (-1)^{n+1} \frac{x^n}{n} + O(x^n+1) \end{aligned} $$
— Fonctions puissance et racine (sqrt)
$$ \begin{aligned} (1+x)^a &= \sum_{n=0}^{\infty}\binom{a}{n} x^n \\ &= \sum_{n=0}^{\infty} x^n \prod _{k=1}^{n}{\frac {\alpha -k+1}{k}} \\ &= 1 + ax + \frac{a(a-1)}{2!}x^2 + \frac{a(a-1)(a-2)}{3!}x^3 + \cdots + \frac{a(a-1)(a-2)\cdots(a-n+1)}{n!}x^n + O(x^n+1) \\ (1+x)^{1/2} &= \sqrt{1+x} \\ &= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \frac{7}{256}x^5 + \cdots \\ (1+x)^{-1/2} &= \frac{1}{\sqrt{1+x}} \\ &= 1 -\frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \frac{63}{256}x^5 + \cdots \end{aligned} $$
— Fonctions inverses
$$ \begin{aligned} \frac{1}{1+x} &= \sum_{n=0}^{\infty} (-1)^n x^n \\ &= 1 - x + x^2 - x^3 + \cdots + (-1)^n x^n + O(x^n) \\ \frac{1}{(1+x)^2} &= \sum_{n=0}^{\infty} (-1)^n nx^{n-1} \\ &= 1 - 2x + 3x^2 - \cdots + (-1)^n nx^{n-1} + O(x^n) \\ \frac{1}{1-x} &= \sum_{n=0}^{\infty} x^{n} \\ &= 1 + x + x^2 + \cdots + x^n + O(x^n) \\ \frac{1}{(1-x)^2} &= \sum_{n=1}^{\infty} nx^{n-1} \\ &= 1 + 2x + 3x^2 + \cdots + nx^{n-1} + O(x^n) \end{aligned} $$
— Fonctions trigonométriques (cosinus, sinus, tangente)
$$ \begin{aligned} \cos(x) &= \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n)!} x^{2n} \\ &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots + \frac{(-1)^n}{(2n)!} x^{2n} + O(x^{2n+1}) \\ \sin(x) &= \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \\ &= x - \frac{x^3}{3!} + \frac{x^{5}}{5!} - \cdots + \frac{(-1)^n}{(2n+1)!} x^{2n+1} + O(x^{2n+2}) \\ \tan(x) &= \sum^{\infty}_{n=1} \frac{B_{2n} (-4)^n (1-4^n)}{(2n)!} x^{2n-1} \\ &= x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \cdots + \frac{B_{2n}(-4)^n(1-4^n)}{(2n)!} x^{2n-1} + O(x^{2n}) \\ \sec(x) &= \sum^{\infty}_{n=0} \frac{(-1)^n E_{2n}}{(2n)!} x^{2n} \\ &= 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \cdots + \frac{(-1)^n E_{2n}}{(2n)!} x^{2n} + O(x^{2n+1}) \end{aligned} $$
avec $ E_n $ les nombres d'Euler.
— Fonctions trigonométriques complémentaires et réciproques
$$ \begin{aligned} \arccos(x) &= \frac{\pi}{2} - \sum^{\infty}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1} \\ &= \frac{\pi}{2} - x - \frac{x^3}{2 \times 3} - \frac{1 \times 3 \times x^5}{2 \times 4 \times 5} - \cdots - \frac{1 \times 3 \times 5 \cdots (2n-1)x^{2n+1}}{2 \times 4 \times 6 \cdots (2n) \times (2n+1)} + O(x^{2n+2}) \\ \arcsin(x) &= \sum^{\infty}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1} \\ &= x + \frac{x^3}{2 \times 3} + \frac{1 \times 3 \times x^5}{2 \times 4 \times 5} + \cdots + \frac{1 \times 3 \times 5 \cdots (2n-1)x^{2n+1}}{2 \times 4 \times 6 \cdots (2n) \times (2n+1)} + O(x^{2n+2}) \\ \arctan(x) &= \sum^{\infty}_{n=0} (-1)^{n}\frac{x^{2n+1}}{2n+1} \\ &= x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots + (-1)^{n}\frac{x^{2n+1}}{2n+1} + O(x^{2n+2}) \end{aligned} $$
— Fonctions trigonométriques hyperboliques et réciproques
$$ \begin{aligned} \cosh(x) &= \sum^{\infty}_{n=0} \frac{x^{2n}}{(2n)!} \\ &= 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots + \frac{x^{2n}}{(2n)!} + O(x^{2n+1}) \\ \sinh(x) &= \sum^{\infty}_{n=0} \frac{x^{2n+1}}{(2n+1)!} \\ &= x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots + \frac{x^{2n+1}}{(2n+1)!} + O(x^{2n+2}) \\ \tanh(x) &= \sum^{\infty}_{n=1} \frac{B_{2n} 4^n \left(4^n-1\right)}{(2n)!} x^{2n-1} \\ &= x - \frac{x^3}{3} + \frac{2x^5}{15} - \frac{17x^7}{315} + \cdots + \frac{B_{2n} 4^n (4^{n}-1)}{(2n)!} x^{2n-1} + O(x^{2n}) \\ \operatorname{asinh}(x) &= \sum^{\infty}_{n=0} \frac{(-1)^n (2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1} \\ &= x - \frac{x^3}{2 \times 3} + \cdots +(-1)^{n} \frac{1 \times 3 \times 5 \cdots (2n-1)x^{2n+1}}{2 \times 4 \times 6 \cdots (2n) \times (2n+1)} + O(x^{2n+2}) \\ \operatorname{atanh}(x) &= \sum^{\infty}_{n=0} \frac{x^{2n+1}}{2n+1} \\ &= x + \frac{x^3}{3} + \cdots + \frac{x^{2n+1}}{2n+1} + O(x^{2n+2}) \end{aligned} $$
avec $ B_n $ les nombres de Bernoulli
Une série de Taylor est une série infinie (sans approximation) aussi appelé série entière.
Un développement limité d'ordre $ n $ est une approximation polynomiale finie.
Dans la majorité des cas pratiques, calculer un développement limité consiste à utiliser la formule de Taylor et à s'arrêter au degré souhaité.
Lorsque la série de Taylor converge vers la fonction (cas des fonctions analytiques), les développements limités sont égaux aux sommes partielles de la série de Taylor.
dCode se réserve la propriété du code source pour "Développement Limité". Tout algorithme pour "Développement Limité", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Développement Limité" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Développement Limité" ou tout autre élément ne sont pas publics (sauf licence open source explicite). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.
Le contenu de la page "Développement Limité" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source (Licence de libre diffusion Creative Commons CC-BY).
L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien :
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Développement Limité sur dCode.fr [site web en ligne], consulté le 17/02/2026,