Rechercher un outil
Décomposition de Schur (Matrice)

Outil de calcul de la décomposition de Schur (ou triangulation de Schur) qui permet d'écrire toute matrice carrée numérique en une multiplication d'une matrice unitaire et une matrice triangulaire supérieure.

Résultats

Décomposition de Schur (Matrice) -

Catégorie(s) : Matrice

Partager
Partager
dCode et vous

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


dCode aime toutes les remarques et commentaires pertinents, pour avoir une réponse, laisser un email (non publié) ! C'est grâce à vous que dCode a le meilleur outil de Décomposition de Schur (Matrice), Merci.

Décomposition de Schur (Matrice)

Annonces sponsorisées

Calculatrice de Décomposition de Schur

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Outil de calcul de la décomposition de Schur (ou triangulation de Schur) qui permet d'écrire toute matrice carrée numérique en une multiplication d'une matrice unitaire et une matrice triangulaire supérieure.

Réponses aux Questions

Qu'est ce que la décomposition de Schur ? (Définition)

La décomposition de Schur d'une matrice carré $ M $ est son écriture sous la forme suivante (aussi appelée forme de Schur) : $$ M = Q.T.Q^{-1} $$

avec $ Q $ une matrice unitaire (telle que $ Q^*.Q = I $) et $ T $ est une matrice triangulaire supérieure dont les valeurs de la diagonale sont les valeurs propres de la matrice.

Cette décomposition ne s'applique qu'aux matrices carrées numériques (pas de variables)

Exemple : La triangulation de Schur de la matrice $ M = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} $ donne $$ Q = \begin{pmatrix} −0.825 & 0.566 \\ 0.566 & −0.825 \end{pmatrix}, T = \begin{pmatrix} −0.372 & −1 \\ 0 & 5.372 \end{pmatrix} $$

Il existe toujours une décomposition de Schur, mais celle ci n'est pas forcément unique.

Comment calculer la décomposition de Schur ?

dCode utilise des algorithmes informatiques faisant intervenir la décomposition QR.

Manuellement, trouver un vecteur propre $ u_1 $ de la matrice $ M $ en calculant ses valeurs propres $ \Lambda_i $. Calculer sa valeur normalisée et une base orthonormée $ {u_1, v_2} $ afin d'obtenir $ U = [ u_1, v_2 ] $. Exprimer la matrice $ M $ dans la base orthonormée $ A_{{u_1,v_2}} = U^{-1}.A.U = U^{T}.A.U $. Répéter l'opération pour chaque vecteur propre afin d'obtenir la matrice triangulaire. NB : pour une matrice 2x2, une seule opération est nécessaire et $ T = A_{{u_1,v_2}} $

Code source

dCode se réserve la propriété du code source du script Décomposition de Schur (Matrice) en ligne. Sauf code licence open source explicite (indiqué Creative Commons / gratuit), tout algorithme, applet, snippet ou logiciel (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction (convertir, résoudre, décrypter, encrypter, déchiffrer, chiffrer, décoder, traduire) codé en langage informatique (PHP, Java, C#, Python, Javascript, Matlab, etc.) dont dCode a les droits ne sera pas cédé gratuitement. Pour télécharger le script en ligne Décomposition de Schur (Matrice) pour un usage hors ligne, PC, iPhone ou Android, demandez un devis sur la page de contact !

Questions / Commentaires


dCode aime toutes les remarques et commentaires pertinents, pour avoir une réponse, laisser un email (non publié) ! C'est grâce à vous que dCode a le meilleur outil de Décomposition de Schur (Matrice), Merci.


Source : https://www.dcode.fr/decomposition-schur-matrice
© 2019 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches. dCode
Un problème ?