Rechercher un outil
Orthonormalisation de Gram-Schmidt

Outil pour calculer des bases orthonormées du sous-espace engendré par des vecteurs via l'algorithme de Gram-Schmidt (orthonormalisation dans le Plan 2D, Espace 3D ou 4D) en calcul formel

Résultats

Orthonormalisation de Gram-Schmidt -

Catégorie(s) : Matrice

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Orthonormalisation de Gram-Schmidt', alors écrivez-nous c'est gratuit ! Merci !

Orthonormalisation de Gram-Schmidt

Orthonormalisation de Vecteurs 2D du Plan


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)
Voir aussi : Calcul Matriciel

Orthonormalisation de Vecteurs 3D de l'Espace


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)
Voir aussi : Matrice de Passage

Orthonormalisation de Vecteurs 4D


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Réponses aux Questions (FAQ)

Qu'est ce que l'algorithme de Gram-Schmidt ? (Définition)

L'algorithme d'orthonormalisation proposé par Gram-Schmidt permet de définir l'existence de bases orthonormées dans une espace en les construisant.

Comment calculer une base orthonormée avec Gram-Schmidt ?

Soit un ensemble de vecteurs $ \vec{v_i} $ et sa base orthonormée, composée des vecteurs $ \vec{e_i} $, correspondante, alors l'algorithme de Gram-Schmidt consiste à calculer les vecteurs orthogonaux $ \vec{u_i} $ qui permettront d'obtenir les vecteurs orthonormaux $ \vec{e_i} $ dont les composantes sont les suivantes (l'opérateur . est le produit scalaire sur l'espace vectoriel)

$$ \vec{u_1} = \vec{v_1} \ , \quad \vec{e_1} = \frac{ \vec{u_1} } { \| \vec{u_1} \| } $$

$$ \vec{u_2} = \vec{v_2} - \frac{ \vec{u_1} . \vec{v_2} }{ \vec{u_1} . \vec{u_1} } \vec{u_1} \ , \quad \vec{e_2} = \frac{ \vec{u_2} } { \| \vec{u_2} \| } $$

$$ \vec{u_3} = \vec{v_3} - \frac{ \vec{u_1} . \vec{v_3} }{ \vec{u_1} . \vec{u_1} } \vec{u_1} - \frac{ \vec{u_2} . \vec{v_3} }{ \vec{u_2} . \vec{u_2} } \vec{u_2} \ , \quad \vec{e_3} = \frac{ \vec{u_3} } { \| \vec{u_3} \| } $$

$$ \vec{u_k} = \vec{v_k} - \sum_{j=1}^{k-1} { \frac{ \vec{u_j} . \vec{v_k} }{ \vec{u_j} . \vec{u_j} } \vec{u_j} } \ , \quad \vec{e_k} = \frac{ \vec{u_k} } { \| \vec{u_k} \| } $$

Exemple : Les vecteurs $ \vec{v_1} = (1,2) $ et $ \vec{v_2} = (1,0) $ de $ \mathbb{R}^2 $ (plan 2D) ont pour base orthonormée $ \vec{e_1} = \left( \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right) $ et $ \vec{e_2} = \left( \frac{2}{\sqrt{5}}, \frac{-1}{\sqrt{5}} \right) $

Code source

dCode se réserve la propriété du code source de l'outil "Orthonormalisation de Gram-Schmidt" en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), tout algorithme pour "Orthonormalisation de Gram-Schmidt", applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction liée à "Orthonormalisation de Gram-Schmidt" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codé en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) aucune donnée, téléchargement, script, copier-coller, ou accès API à "Orthonormalisation de Gram-Schmidt" ne sera cédé gratuitement, idem pour un usage hors ligne, PC, tablette, appli iPhone ou Android ! dCode est gratuit est en ligne.

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Orthonormalisation de Gram-Schmidt', alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/orthonormalisation-gram-schmidt
© 2021 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?