Search for a tool
Schur Decomposition (Matrix)

Tool to calculate Schur decomposition (or Schur triangulation) that makes it possible to write any numerical square matrix into a multiplication of a unitary matrix and an upper triangular matrix.

Results

Schur Decomposition (Matrix) -

Tag(s) : Matrix

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Thanks to your feedback and relevant comments, dCode has developed the best 'Schur Decomposition (Matrix)' tool, so feel free to write! Thank you!

Schur Decomposition (Matrix)

Schur Decomposition Calculator

Loading...
(if this message do not disappear, try to refresh this page)

Answers to Questions (FAQ)

What is the Schur Decomposition ? (Definition)

The Schur decomposition of a square matrix $ M $ is its writing in the following form (also called Schur form): $$ M = Q.T.Q^{-1} $$

with $ Q $ a unitary matrix (such as $ Q^*.Q=I $) and $ T $ is an upper triangular matrix whose diagonal values are the eigenvalues of the matrix.

This decomposition only applies to numerical square matrices (no variables)

Example: The Schur triangulation of the matrix $ M = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} $ gives $$ Q = \begin{pmatrix} −0.825 & 0.566 \\ 0.566 & −0.825 \end{pmatrix}, T = \begin{pmatrix} −0.372 & −1 \\ 0 & 5.372 \end{pmatrix} $$

There is always a decomposition of Schur, but it is not necessarily unique.

How to calculate the Schur Decomposition for a matrix?

dCode uses computer algorithms involving QR decomposition.

Manually, find a proper vector $ u_1 $ of the matrix $ M $ by calculating its eigenvalues $ \Lambda_i $. Calculate its normalized value and an orthonormal basis $ {u_1, v_2} $ to obtain $ U = [u_1, v_2] $. Express the matrix $ M $ in the orthonormal basis $ A_{{u_1, v_2}} = U^{-1}.A.U = U^{T}.A.U $. Repeat the operation for each eigenvector to obtain the triangular matrix. NB: for a 2x2 matrix, only one operation is necessary and $ T = A_{{u_1, v_2}} $

Source code

dCode retains ownership of the online "Schur Decomposition (Matrix)" source code. Except explicit open source licence (indicated CC / Creative Commons / free), the "Schur Decomposition (Matrix)" algorithm, the applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or the "Schur Decomposition (Matrix)" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and all data download, script, copy-paste, or API access for "Schur Decomposition (Matrix)" are not public, same for offline use on PC, tablet, iPhone or Android ! Remainder : dCode is free to use.

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Thanks to your feedback and relevant comments, dCode has developed the best 'Schur Decomposition (Matrix)' tool, so feel free to write! Thank you!


Source : https://www.dcode.fr/matrix-schur-decomposition
© 2021 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.
Feedback