Tool for making coordinates changes system in 3d-space (Cartesian, spherical, cylindrical, etc.), geometric operations to represent elements in different referentials.
3D Coordinates Systems - dCode
Tag(s) : Geometry
dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!
Tool for making coordinates changes system in 3d-space (Cartesian, spherical, cylindrical, etc.), geometric operations to represent elements in different referentials.
From Cartesian coordinates $ (x, y, z) $, the base / referential change to spherical coordinates $ (\rho,\theta,\varphi) $ follows the equations: $$ \rho = \sqrt{x^2 + y^2 + z^2} \\ \theta = \arccos \left( \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right) = \arccos \left( \frac{z}{\rho} \right) \\ \varphi = \arctan \left( \frac{y}{x} \right) $$
Example: Le point in space in position $ (0,\sqrt{2},\sqrt{2}) $ from cartesian coordinates is defined by spherical coordinates $ \rho = 1 $, $ \theta = \pi/4 $ and $ \varphi = \pi/2 $
The conversion can be seen as two consecutive Cartesian to Polar coordinates conversions, first one in the $ xy $ plane to convert $ (x, y) $ to $ (R, \varphi) $ (with $ R $ the projection of $ \rho $ on the $ xy $ plane, then a second conversion but in the $ zR $ plane to change $ (z, R) $ to $ (\rho, \theta) $
NB: by convention, the value of $ \rho $ is positive, the value of $ \theta $ is included in the invervalle $ ] 0, \pi [ $ and the value of $ \varphi $ is included in the inverval $ ] -\pi, \pi [ $
If $ \rho = 0 $ then the angles can be defined by any real numbers of the interval
From cartesian coordinates $ (x, y, z) $ the base / referential change to cylindrical coordinates $ (r, \theta, z) $ follows the equations: $$ r = \sqrt{x^2 + y^2} \\ \theta = \arctan \left( \frac {y}{x} \right) \\ z = z $$
NB: by convention, the value of $ \rho $ is positive, the value of $ \theta $ is included in the invervalle $ ] -\pi, \pi [ $ and the $ \varphi $ is a real number
From spherical coordinates $ (\rho,\theta,\varphi) $ the base / referential change to cartesian coordinates $ (x,y,z) $ follows the equations: $$ x = r \sin\theta \cos\varphi \\ y = \rho \sin\theta \sin\varphi \\ z = \rho $$
From spherical coordinates $ (\rho,\theta,\varphi) $ the base / referential change to cylindrical coordinates $ (r,\theta^*,z) $ follows the equations: $$ r = \rho \sin \theta \\ \theta^* = \varphi \\ z = \rho \cos \theta $$
From cylindrical coordinates $ (r,\theta,z) $ the base / referential change to cartesian coordinates $ (x,y,z) $ follows the equations: $$ x = r \cos\theta \\ y = r \sin\theta \\ z = z $$
From cylindrical coordinates $ (r,\theta^*,z) $ the base / referential change to spherical coordinates $ (\rho,\theta,\varphi) $ follows the equations: $$ \rho = \sqrt{r^2 + z^2} \\ \theta = \arctan \left( \frac{r}{z} \right) = \arccos \left( \frac{z}{\sqrt{r^2 + z^2}} \right) \\ \varphi = \theta^* $$
dCode retains ownership of the source code of the script 3D Coordinates Systems online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online 3D Coordinates Systems script for offline use on PC, iPhone or Android, ask for price quote on contact page !