Tool to compute a Cofactor matrix: a matrix composed of the determinants of its sub-matrices (minors).

Cofactor Matrix - dCode

Tag(s) : Matrix

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!

A suggestion ? a feedback ? a bug ? an idea ? *Write to dCode*!

Sponsored ads

Tool to compute a Cofactor matrix: a matrix composed of the determinants of its sub-matrices (minors).

The **cofactor matrix** of a square matrix \( M \) is noted \( Cof(M) \). For each item in the matrix, compute the determinant of the sub-matrix \( SM \) associated. The determinant is noted \( \text{Det}(SM) \) or \( | SM | \) and is also called 'minor'. To calculate \( Cof(M) \) multiply each minor by a \( -1 \) factor according to the position in the matrix.

$$ Cof_{i,j} = (-1)^{i+j} \text{Det}(SM_i) $$

Calculation of a 2x2 **cofactor matrix** :

$$ M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} $$

$$ M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} $$

$$ Cof(M) = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix} $$

Example: $$ M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \Rightarrow Cof(M) = \begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix} $$

Calculation of a 3x3 **cofactor matrix** :

$$ M = \begin{bmatrix} a & b & c \\d & e & f \\ g & h & i \end{bmatrix} $$

$$ Cof(M) = \begin{bmatrix} + \begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & +\begin{vmatrix} d & e \\ g & h \end{vmatrix} \\ & & \\ -\begin{vmatrix} b & c \\ h & i \end{vmatrix} & +\begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & b \\ g & h \end{vmatrix} \\ & & \\ +\begin{vmatrix} b & c \\ e & f \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} & +\begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{bmatrix} $$

The transpose of the **cofactor matrix** (comatrix) is the adjoint matrix.

Most of the properties of the **cofactor matrix** actually concern its transpose, the transpose of the matrix of the cofactors is called adjugate matrix.

$$ A({}^t{{\rm com} A}) = ({}^t{{\rm com} A})A =\det{A} \times I_n $$

$$ A^{-1}=\frac1{\det A} \, {}^t{{\rm com} A} $$

A cofactor is calculated from the minor of the submatrix.

$$ Cof_{i, j} = (-1)^{i + j} \text{Det}(SM_i) $$

dCode retains ownership of the source code of the script Cofactor Matrix online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online Cofactor Matrix script for offline use on PC, iPhone or Android, ask for price quote on contact page !

cofactor,matrix,minor,determinant,comatrix

Source : https://www.dcode.fr/cofactor-matrix

© 2019 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaches. dCode

Feedback

▲