Search for a tool
Cofactor Matrix

Tool to compute a Cofactor matrix: a matrix composed of the determinants of its sub-matrices (minors).

Results

Cofactor Matrix -

Tag(s) : Matrix

Share dCode and you

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!

Team dCode likes feedback and relevant comments; to get an answer give an email (not published). It is thanks to you that dCode has the best Cofactor Matrix tool. Thank you.

# Cofactor Matrix

## Matrix Cofactor Calculator

Tool to compute a Cofactor matrix: a matrix composed of the determinants of its sub-matrices (minors).

### How to calculate the matrix of cofactors?

The cofactor matrix of a square matrix $$M$$ is noted $$Cof(M)$$. For each item in the matrix, compute the determinant of the sub-matrix $$SM$$ associated. The determinant is noted $$\text{Det}(SM)$$ or $$| SM |$$ and is also called 'minor'. To calculate $$Cof(M)$$ multiply each minor by a $$-1$$ factor according to the position in the matrix.

$$Cof_{i,j} = (-1)^{i+j} \text{Det}(SM_i)$$

Calculation of a 2x2 cofactor matrix :

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$Cof(M) = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$$

Example: $$M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \Rightarrow Cof(M) = \begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}$$

Calculation of a 3x3 cofactor matrix :

$$M = \begin{bmatrix} a & b & c \\d & e & f \\ g & h & i \end{bmatrix}$$

$$Cof(M) = \begin{bmatrix} + \begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & +\begin{vmatrix} d & e \\ g & h \end{vmatrix} \\ & & \\ -\begin{vmatrix} b & c \\ h & i \end{vmatrix} & +\begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & b \\ g & h \end{vmatrix} \\ & & \\ +\begin{vmatrix} b & c \\ e & f \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} & +\begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{bmatrix}$$

The transpose of the cofactor matrix (comatrix) is the adjoint matrix.

### What are the properties of the cofactor matrix?

Most of the properties of the cofactor matrix actually concern its transpose, the transpose of the matrix of the cofactors is called adjugate matrix.

$$A({}^t{{\rm com} A}) = ({}^t{{\rm com} A})A =\det{A} \times I_n$$

$$A^{-1}=\frac1{\det A} \, {}^t{{\rm com} A}$$

### What is the cofactor of a matrix?

A cofactor is calculated from the minor of the submatrix.

$$Cof_{i, j} = (-1)^{i + j} \text{Det}(SM_i)$$

## Source code

dCode retains ownership of the source code of the script Cofactor Matrix online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online Cofactor Matrix script for offline use on PC, iPhone or Android, ask for price quote on contact page !