Search for a tool
Trace of a Matrix

Tool to compute the trace of a matrix. The trace of a square matrix M is the addition of values of its main diagonal, and is noted Tr(M).

Results

Trace of a Matrix -

Tag(s) : Matrix

Share
Share
dCode and you

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our community Discord for help requests!


Thanks to your feedback and relevant comments, dCode has developped the best Trace of a Matrix tool, so feel free to write! Thank you !

Trace of a Matrix

Square Matrix Trace Calculator NxN

Loading...
(if this message do not disappear, try to refresh this page)

Rectangular Matrix Trace Calculator NxM

Loading...
(if this message do not disappear, try to refresh this page)

Tool to compute the trace of a matrix. The trace of a square matrix M is the addition of values of its main diagonal, and is noted Tr(M).

Answers to Questions

What is the matrix trace? (Definition)

The trace of a square matrix is the addition of the values on its main diagonal (starting from the top left corner and shifting one space to the right and down).

$$ \begin{bmatrix} X & . & . \\ . & X & . \\ . & . & X \end{bmatrix} or \begin{bmatrix} X & . & . \\ . & X & . \end{bmatrix} or \begin{bmatrix} X & . \\ . & X \\ . & . \end{bmatrix} $$

How to calculate a matrix trace?

To calculate the trace of a square matrix $ M $ of size $ n $, make the sum of diagonal values:

$$ \mathrm{Tr}(M) = \sum_{i=1}^{n} a_{i \, i} $$

For a 2x2 matrix : $$ M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ \mathrm{Tr}(M) = a+d $$

Example: $$ M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \\ \mathrm{Tr}(M) = 1+4 = 5 $$

For a 3x3 matrix : $$ M = \begin{bmatrix} a & b & c \\d & e & f \\ g & h & i \end{bmatrix} \\ \mathrm{Tr}(M) = a+e+i $$

For rectangular matrix $ M $ of size $ m \times n $, the diagonal used is the one of the included square matrix (from top left corner).

Example: $$ M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \Rightarrow \mathrm{Tr}(M) = \mathrm{Tr} \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix} $$

What are trace mathematical properties?

Trace follows the following properties:

The trace of an identity matrix $ I_n $ (of size $ n $) equals $ n $.

$$ \mathrm{Tr}(I_n) = n $$

For A and B of the same order (that can be added):

$$ \mathrm{Tr}(A + B) = \mathrm{Tr}(A) + \mathrm{Tr}(B) $$

For a given scalar c:

$$ \mathrm{Tr}(c A) = c \mathrm{Tr}(A) $$

For $ A^T $ the transposed matrix of A:

$$ \mathrm{Tr}(A^T) = \mathrm{Tr}(A) $$

Source code

dCode retains ownership of the online 'Trace of a Matrix' tool source code. Except explicit open source licence (indicated CC / Creative Commons / free), any algorithm, applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (PHP, Java, C#, Python, Javascript, Matlab, etc.) no data, script or API access will be for free, same for Trace of a Matrix download for offline use on PC, tablet, iPhone or Android !

Need Help ?

Please, check our community Discord for help requests!

Questions / Comments

Thanks to your feedback and relevant comments, dCode has developped the best Trace of a Matrix tool, so feel free to write! Thank you !


Source : https://www.dcode.fr/matrix-trace
© 2020 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.
Feedback