Search for a tool

Results

Tag(s) : Matrix

Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Thanks to your feedback and relevant comments, dCode has developed the best 'Adjoint Matrix' tool, so feel free to write! Thank you!

### How to compute the adjugate matrix?

To calculate the adjoint matrix ${\rm Adj}$ of the square matrix $M$, compute $^{\operatorname t}{\rm Cof}$ the transpose of the cofactors matrix of $M$.

$${\rm Adj}=^{\operatorname t}{\rm Cof}$$

To calculate the cofactors matrix ${\rm Cof}(M)$, compute, for each value of the matrix in position $(i,j)$, the determinant of the associated sub-matrix $SM$ (called minor) and multiply with a $-1$ factor depending on the position in the matrix.

$${\rm Cof}_{i,j}=(-1)^{i+j}\text{Det}(SM_i)$$

To get the adjoint matrix, take the transposed matrix of the calculated cofactor matrix.

Formula for a 2x2 matrix:

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$${\rm Cof}(M) = \begin{pmatrix} {{d}} & {{-c}} \\ {{-b}} & {{a}} \end{pmatrix}$$

$${\rm Adj}(M) = \begin{pmatrix} {{d}} & {{-b}} \\ {{-c}} & {{a}} \end{pmatrix}$$

Example: $$M = \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix} \Rightarrow {\rm Cof}(M) = \begin{pmatrix} {{1}} & {{-2}} \\ {{-3}} & {{4}} \end{pmatrix} \Rightarrow {\rm Adj}(M) = \begin{pmatrix} {{1}} & {{-3}} \\ {{-2}} & {{4}} \end{pmatrix}$$

Formula for a 3x3 matrix:

$$M = \begin{pmatrix} a & b & c \\d & e & f \\ g & h & i \end{pmatrix}$$

$${\rm Cof}(M) = \begin{pmatrix} +\begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & +\begin{vmatrix} d & e \\ g & h \end{vmatrix} \\ & & \\ -\begin{vmatrix} b & c \\ h & i \end{vmatrix} & +\begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & b \\ g & h \end{vmatrix} \\ & & \\ +\begin{vmatrix} b & c \\ e & f \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} & +\begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{pmatrix}$$

$${\rm Adj}(M) = \begin{pmatrix} +\begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} b & c \\ h & i \end{vmatrix} & +\begin{vmatrix} b & c \\ e & f \end{vmatrix} \\ & & \\ -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & +\begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} \\ & & \\ +\begin{vmatrix} d & e \\ g & h \end{vmatrix} & -\begin{vmatrix} a & b \\ g & h \end{vmatrix} & +\begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{pmatrix}$$

## Source code

dCode retains ownership of the online 'Adjoint Matrix' tool source code. Except explicit open source licence (indicated CC / Creative Commons / free), any 'Adjoint Matrix' algorithm, applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any 'Adjoint Matrix' function (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and no data download, script, copy-paste, or API access for 'Adjoint Matrix' will be for free, same for offline use on PC, tablet, iPhone or Android ! dCode is free and online.

## Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!