Tool to compute an Adjoint Matrix for a square matrix. Adjoint/Adjugate/Adjacency Matrix is name given to the transpose of the cofactors matrix.
Adjoint Matrix - dCode
Tag(s) : Matrix
dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!
Tool to compute an Adjoint Matrix for a square matrix. Adjoint/Adjugate/Adjacency Matrix is name given to the transpose of the cofactors matrix.
To calculate the adjoint matrix $ {\rm Adj} $ of the square matrix $ M $, compute $ ^{\operatorname t}{\rm Cof} $ the transpose of the cofactors matrix of $ M $.
$$ {\rm Adj}=^{\operatorname t}{\rm Cof} $$
To calculate the cofactors matrix $ {\rm Cof}(M) $, compute, for each value of the matrix in position $ (i,j) $, the determinant of the associated sub-matrix $ SM $ (called minor) and multiply with a $ -1 $ factor depending on the position in the matrix.
$$ {\rm Cof}_{i,j}=(-1)^{i+j}\text{Det}(SM_i) $$
To get the adjoint matrix, take the transposed matrix of the calculated cofactor matrix.
Formula for a 2x2 matrix:
$$ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} $$
$$ {\rm Cof}(M) = \begin{pmatrix} {{d}} & {{-c}} \\ {{-b}} & {{a}} \end{pmatrix} $$
$$ {\rm Adj}(M) = \begin{pmatrix} {{d}} & {{-b}} \\ {{-c}} & {{a}} \end{pmatrix} $$
Example: $$ M = \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix} \Rightarrow {\rm Cof}(M) = \begin{pmatrix} {{1}} & {{-2}} \\ {{-3}} & {{4}} \end{pmatrix} \Rightarrow {\rm Adj}(M) = \begin{pmatrix} {{1}} & {{-3}} \\ {{-2}} & {{4}} \end{pmatrix} $$
Formula for a 3x3 matrix:
$$ M = \begin{pmatrix} a & b & c \\d & e & f \\ g & h & i \end{pmatrix} $$
$$ {\rm Cof}(M) = \begin{pmatrix} +\begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & +\begin{vmatrix} d & e \\ g & h \end{vmatrix} \\ & & \\ -\begin{vmatrix} b & c \\ h & i \end{vmatrix} & +\begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & b \\ g & h \end{vmatrix} \\ & & \\ +\begin{vmatrix} b & c \\ e & f \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} & +\begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{pmatrix} $$
$$ {\rm Adj}(M) = \begin{pmatrix} +\begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} b & c \\ h & i \end{vmatrix} & +\begin{vmatrix} b & c \\ e & f \end{vmatrix} \\ & & \\ -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & +\begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} \\ & & \\ +\begin{vmatrix} d & e \\ g & h \end{vmatrix} & -\begin{vmatrix} a & b \\ g & h \end{vmatrix} & +\begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{pmatrix} $$
Adjugate matrix, adjoint matrix or adjunct matrix are the same.
dCode retains ownership of the online 'Adjoint Matrix' tool source code. Except explicit open source licence (indicated CC / Creative Commons / free), any algorithm, applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (PHP, Java, C#, Python, Javascript, Matlab, etc.) no data, script or API access will be for free, same for Adjoint Matrix download for offline use on PC, tablet, iPhone or Android !
Please, check our community Discord for help requests!