Rechercher un outil
Représentation de Zeckendorf

Outil pour appliquer/vérifier le théorème de Zeckendorf stipulant que tout nombre entier peut être écrit sous la forme de somme de nombres de Fibonacci non consécutifs aussi appelé représentation de Zeckendorf.

Résultats

Représentation de Zeckendorf -

Catégorie(s) : Arithmétique

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Représentation de Zeckendorf', alors écrivez-nous c'est gratuit ! Merci !

Représentation de Zeckendorf

Calculateur de Représentation de Zeckendorf


Outil pour appliquer/vérifier le théorème de Zeckendorf stipulant que tout nombre entier peut être écrit sous la forme de somme de nombres de Fibonacci non consécutifs aussi appelé représentation de Zeckendorf.

Réponses aux Questions

Qu'est ce que le théorème de Zeckendorf ? (Définition)

Tout entier naturel $ n \in \mathbb{N} $ possède une représentation unique sous la forme d'une somme de nombres de Fibonacci non consécutifs. Sa formule s'écrit : $$ n = \sum_{i=0}^{k} \alpha_i F_{i} $$ avec $ F_i $ le ième nombre de Fibonacci, $ \alpha_i $ un nombre binaire valant $ 0 $ ou $ 1 $ (manière d'indiquer que soit le nombre de Fibonacci est dans la somme, soit il ne l'est pas) et $ \alpha_i \times \alpha_{i+1} = 0 $ (manière de rendre impossible 2 nombres de Fibonacci consécutif).

Cette propriété est utilisée dans le codage de Fibonacci (une représentation binaire de tout nombre entier, basée sur les valeurs de $ \alpha_i $)

Comment calculer une représentation de Zeckendorf ?

Indiquer une valeur d'un nombre $ N $ et dCode fera le calcul automatiquement.

Exemple : 10000 est la somme de $ 6765 + 2584 + 610 + 34 + 5 + 2 $, respectivement les 20ème, 18ème, 15ème, 9ème, 5ème et 3ème nombres de Fibonacci

Algorithmiquement, dCode utilise la formule de Binet pour obtenir les nombres de Fibonacci proches d'un nombre donné et les soustrait recursivement jusqu'à trouver la représentation de Zeckendorf.

Code source

dCode se réserve la propriété du code source de l'outil 'Représentation de Zeckendorf' en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), tout algorithme, applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction (convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codé en langage informatique (PHP, Java, C#, Python, Javascript, Matlab, etc.) aucune donnée, script ou accès API ne sera cédé gratuitement, idem pour télécharger Représentation de Zeckendorf pour un usage hors ligne, PC, tablette, appli iPhone ou Android !

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Représentation de Zeckendorf', alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/representation-zeckendorf
© 2020 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?