Rechercher un outil
Nombres de Fibonacci

Outil pour calculer les nombres de Fibonacci. La suite de Fibonacci est une suite de nombres entiers dont chaque terme est la somme des deux termes précédents.

Résultats

Nombres de Fibonacci -

Catégorie(s) : Séries

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Nombres de Fibonacci', alors écrivez-nous c'est gratuit ! Merci !

Nombres de Fibonacci

Calculatrice de Nombres de Fibonacci



Affichage de la suite




Valeurs initiales (graines)

Les graines par défaut de la suite de Fibonacci sont 0 et 1.



Voir aussi : Triangle de Pascal

Réponses aux Questions (FAQ)

Comment calculer la suite de Fibonacci ?

Les nombres de la suite de Fibonacci, noté $ F_n $ ou $ F(n) $ sont égaux à la somme des deux termes précédents, ils suivent donc la formule de récurrence : $$ F(n) = F(n-1) + F(n-2) $$ qui peut aussi s'écrire $$ F(n+2) = F(n) + F(n+1) $$

Pour initialiser la suite, par défaut, les deux premiers termes (appelés graines) sont $ F(0) = 0 $ et $ F(1) = 1 $

Exemple : $ F_2 = F_0+F_1 = 0+1 = 1 $
$ F_3 = F_1+F_2 = 1+1 = 2 $
$ F_{10} = F_8+F_9 $, etc.

Toute autres valeurs de $ F_0 $ et $ F_1 $ produiront des suites de Fibonacci différentes.

Quels sont les premiers termes de la suite de Fibonacci ?

Les premiers nombres de la suite de Fibonacci sont :

F(0)=0
F(1)=1
F(2)=1
F(3)=2
F(4)=3
F(5)=5
F(6)=8
F(7)=13
F(8)=21
F(9)=34
F(10)=55

Pour les termes de Fibonacci suivants, utiliser le calculateur ci dessus.

Comment connaitre le terme précédent de Fibonacci ?

Chaque terme de la séquence est égal au précédent multiplié par environ $ \varphi = 1.618 $ (nombre d'or).

Exemple : $ F(10) = 55 $, $ 55/\varphi \approx 33.99 $ alors que $ F(9) = 34 $

Qu'est ce que le problème des lapins de Fibonacci ?

Le problème des lapins est un problème proposé par Leonardo Fibonacci vers 1200.

En prenant un couple de lapins (male + femelle), chaque mois, un couple se reproduit et donne naissance à un nouveau couple qui à son tour peut se reproduire au bout de 2 mois. Combien de lapins seront nés au bout de X mois ?

Au commencement il y a 1 couple, puis

1 mois1 couple
2 mois2 couples
3 mois3 couples
4 mois5 couples
5 mois8 couples
6 mois13 couples
7 mois21 couples
8 mois34 couples

Chaque mois, le nombre total de lapins est égal à la somme des nombres des 2 mois précédents puisqu'il s'agit du nombre de lapins existant (ceux du mois précédent) additionné du nombre de bébés des lapins nés des couples qui ont au moins deux mois (donc le nombre de lapins il y a 2 mois). Les nombres trouvés sont les nombres de la suite de Fibonacci.

Code source

dCode se réserve la propriété du code source de "Nombres de Fibonacci" en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), l'algorithme pour "Nombres de Fibonacci", l'applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou les fonctions liée à "Nombres de Fibonacci" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou les données, en téléchargement, script, ou copier-coller, ou les accès API à "Nombres de Fibonacci" ne sont pas publics, idem pour un usage hors ligne, PC, tablette, appli iPhone ou Android ! Rappel : dCode est gratuit.

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Nombres de Fibonacci', alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/nombres-fibonacci
© 2021 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?