Outil pour trouver les inconnues dans un triangle. La résolution d'équations dans un triangle permet de retrouver toutes les inconnues dans le triangle connaissant 2 ou 3 valeurs caractéristiques.
Inconnues dans le Triangle - dCode
Catégorie(s) : Géométrie
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !
Outil pour trouver les inconnues dans un triangle. La résolution d'équations dans un triangle permet de retrouver toutes les inconnues dans le triangle connaissant 2 ou 3 valeurs caractéristiques.
En considérant que les trois côtés du triangle quelconque $ a $, $ b $ et $ c $ sont connus.
Les formules de calcul pour les 3 angles (valeurs inconnues), l'aire et le périmètre sont :
$$ \alpha = \arccos\left( \frac{b^2+c^2-a^2}{2bc} \right) $$
$$ \beta = \arccos\left( \frac{c^2+a^2-b^2}{2ca} \right) $$
$$ \gamma = \arccos\left( \frac{a^2+b^2-c^2}{2ab} \right) $$
$$ \mathcal{A} = \frac14\sqrt{(a+b+c)(a+b-c)(-a+b+c)(a-b+c)} $$
$$ \mathcal{P} = a+b+c $$
En considérant que l'angle $ \gamma $ et ses cotés adjacents $ a $ et $ b $ sont connus.
Les formules de calcul pour les 2 autres angles, le coté opposé, l'aire et le périmètre sont :
$$ c = \sqrt{a^2+b^2-2ab\cos\gamma} $$
$$ \alpha = \frac\pi2 - \frac\gamma2 + \arctan\left(\frac{a-b}{(a+b)\tan\frac\gamma2}\right) $$
$$ \beta = \frac\pi2 - \frac\gamma2 - \arctan\left(\frac{a-b}{(a+b)\tan\frac\gamma2}\right) $$
$$ \mathcal{A} = \frac12 ab\sin\gamma $$
$$ \mathcal{P} = a+b+\sqrt{a^2+b^2-2ab\cos\gamma} $$
En considérant que l'angle $ \beta $, le coté adjacent $ c $ et le coté opposé $ b $ sont connus.
Si $ \beta $ est aigu et que $ b < c $ alors les formules de calcul pour les 2 autres angles, le dernier coté adjacent, l'aire et le périmètre sont :
$$ a = c\cos\beta-\sqrt{b^2-c^2\sin^2\beta} $$
$$ \gamma = \pi-\arcsin\left(\frac{c\sin\beta}b\right) $$
$$ \alpha = -\beta + \arcsin\left(\frac{c\sin\beta}b\right) $$
$$ \mathcal{A} = \frac 12 c\left(\sqrt{b^2-c^2\sin^2\beta}-c\cos\beta\right)\sin\beta $$
$$ \mathcal{P} = c\cos\beta-\sqrt{b^2-c^2\sin^2\beta}+b+c $$
Si $ \beta $ n'est pas aigu ou que $ b >= c $ alors les formules de calcul pour les 2 autres angles, le dernier coté adjacent, l'aire et le périmètre sont :
$$ a = \sqrt{b^2-c^2\sin^2\beta}+c\cos\beta $$
$$ \alpha = \pi-\beta-\arcsin\left(\frac{c\sin\beta}b\right) $$
$$ \gamma = \arcsin \left(\frac{c\sin\beta}b\right) $$
$$ \mathcal{A} = \frac 12c\left(\sqrt{b^2-c^2\sin^2\beta}+c\cos\beta\right)\sin\beta $$
$$ \mathcal{P} = \sqrt{b^2-c^2\sin^2\beta}+c\cos\beta+b+c $$
En considérant que les angles $ \alpha $ et $ \beta $ et leur coté commun $ c $ sont connus.
Les formules de calcul pour les 2 autres côtés, le dernier angle, l'aire et le périmètre sont :
$$ a = \frac {c\sin\alpha}{\sin(\alpha+\beta)} $$
$$ b = \frac {c\sin\beta}{ \sin(\alpha+\beta)} $$
$$ \gamma = \pi-\alpha-\beta\ $$
$$ \mathcal{A} = \frac12 c^2 \, \frac{\sin\alpha\sin\beta}{\sin(\alpha+\beta)} $$
$$ \mathcal{P} = \frac {c ( \sin\alpha + \sin\beta )}{ \sin(\alpha+\beta)} + c $$
En considérant que les angles $ \alpha $ et $ \beta $ et un de leur coté non commun $ a $ sont connus.
Les formules de calcul pour les 2 autres côtés, le dernier angle, l'aire et le périmètre sont :
$$ b = \frac{a\sin\beta}{\sin\alpha} $$
$$ c = \frac{a\sin(\alpha+\beta)}{\sin\alpha} $$
$$ \gamma = \pi-\alpha-\beta $$
$$ \mathcal{A} = \frac12 a^2 \, \frac{\sin(\alpha+\beta)\sin\beta}{\sin\alpha} $$
$$ \mathcal{P} = a + \frac{a(\sin\beta+\sin(\alpha+\beta))}{\sin\alpha} $$
En considérant que l'aire $ \mathcal{A} $, l'angle $ \gamma $ et le coté adjacent $ a $ sont connus.
Les formules de calcul pour les 2 autres côtés, les 2 autres angles et le périmètre sont :
$$ b = \frac{2\mathcal{A}}{a\sin\gamma} $$
$$ c = \frac{1}{a} \sqrt{a^2-\frac{4 \mathcal{A}}{\tan{\gamma}}+\frac{4 \mathcal{A}^2}{a^2\sin{\gamma}^2}} $$
$$ \alpha = \frac{1}{2} \left(\pi -\gamma +2 \arctan{\frac{a-\frac{2 \mathcal{A}}{a \sin\gamma}}{\left(a+\frac{2 \mathcal{A}}{a\sin\gamma}\right)\tan{\frac{\gamma}{2}}}}\right) $$
$$ \beta = \frac{1}{2} \left(\pi -\gamma -2 \arctan{\frac{a-\frac{2 \mathcal{A}}{a \sin\gamma}}{\left(a+\frac{2 \mathcal{A}}{a\sin\gamma}\right)\tan{\frac{\gamma}{2}}}}\right) $$
$$ \mathcal{P} = \frac{1}{a} \left( a^2 + \frac{2\mathcal{A}}{\sin\gamma} + \sqrt{a^2-\frac{4 \mathcal{A}}{\tan{\gamma}}+\frac{4 \mathcal{A}^2}{a^2\sin\gamma^2}} \right) $$
En considérant que l'aire $ \mathcal{A} $, l'angle $ \alpha $ et le coté opposé $ a $ sont connus.
Les formules de calcul pour les 2 autres côtés, les 2 autres angles et le périmètre sont :
$$ b = \frac{1}{\sqrt{2}}\sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}+a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}} $$
$$ c = \frac{1}{\sqrt{2}}\sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}-a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}} $$
$$ \beta = \arcsin\left(\frac{2\sqrt{2}\mathcal{A}}{a\sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}-a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}}}\right) $$
$$ \gamma = \arcsin\left(\frac{2\sqrt{2}\mathcal{A}}{a\sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}+a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}}}\right) $$
$$ \mathcal{P} = a+\frac{1}{\sqrt{2}}\left( \sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}+a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}} +\sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}-a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}} \right) $$
En considérant que l'aire $ \mathcal{A} $ et les cotés $ b $ et $ c $ sont connus.
Les formules de calcul pour le dernier côté, les 3 angles et le périmètre sont :
$$ a = \sqrt{b^2+c^2+2 \sqrt{b^2 c^2-4 \mathcal{A}^2}} $$
$$ \alpha = \arccos\left(-\frac{\sqrt{b^2 c^2-4 \mathcal{A}^2}}{b c}\right) $$
$$ \beta = \arccos\left(\frac{2 c^2+2 \sqrt{2+b^2 c^2-4 \mathcal{A}}}{2 c \sqrt{b^2+c^2+2 \sqrt{b^2 c^2-4 \mathcal{A}^2}}}\right) $$
$$ \gamma = \arccos\left(\frac{2 b^2+2 \sqrt{b^2 c^2-4 \mathcal{A}}}{2 b \sqrt{b^2+c^2+2 \sqrt{b^2 c^2-4 \mathcal{A}^2}}}\right) $$
$$ \mathcal{P} = \sqrt{b^2+c^2+2 \sqrt{b^2 c^2-4 \mathcal{A}^2}} + b + c $$
En considérant que le triangle est isocèle en $ A $.
Les 2 cotés formant l'angle $ \alpha $ sont égaux $$ b = c $$
Les 2 angles adjacents au troisième coté $ a $ sont égaux $$ \beta = \gamma $$
Exemple : Si $ b = 3 $ et $ \beta = \frac{\pi}{6} $, Alors $ c = 3 $ et $ \gamma = \frac{\pi}{6} $
En considérant que le triangle est rectangle en $ C $.
L'angle $ \gamma $ est droit $$ \gamma = 90° = \frac\pi2 $$
La somme des 2 autres angles fait 90° $$ \alpha + \beta = 90° = \frac\pi2 $$
Le théorème de Pythagore s'applique $$ a^2 + b^2 = c^2 $$
L'aire du triangle se simplifie par $$ \mathcal{A} = \frac{ab}{2} $$
En considérant que le triangle est équilatéral, prendre en compte ces équations :
Les 3 cotés sont égaux $$ a = b = c $$
Les 3 angles sont égaux à 60° $$ \alpha = \beta = \gamma = 60° = \frac\pi3 $$
Le périmètre du triangle se simplifie par $$ \mathcal{P} = 3a = 3b = 3c $$
dCode se réserve la propriété du code source du script Inconnues dans le Triangle en ligne. Sauf code licence open source explicite (indiqué Creative Commons / gratuit), tout algorithme, applet, snippet ou logiciel (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction (convertir, résoudre, décrypter, encrypter, déchiffrer, chiffrer, décoder, traduire) codé en langage informatique (PHP, Java, C#, Python, Javascript, Matlab, etc.) dont dCode a les droits ne sera pas cédé gratuitement. Pour télécharger le script en ligne Inconnues dans le Triangle pour un usage hors ligne, PC, iPhone ou Android, demandez un devis sur la page de contact !