Rechercher un outil
Argument de Nombre Complexe

Outil pour calculer la valeur de l'argument d'un nombre complexe. L'argument d'un nombre complexe non nul $ z $ est la valeur (en radians) de l'angle $ \theta $ entre l'abscisse du plan complexe et la droite formée par $ (0;z) $.

Résultats

Argument de Nombre Complexe -

Catégorie(s) : Arithmétique, Géométrie

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Argument de Nombre Complexe', alors écrivez-nous c'est gratuit ! Merci !

Argument de Nombre Complexe

Calculatrice d'Argument


Calcul à partir d'un Argument et d'un Module



Réponses aux Questions (FAQ)

Comment calculer l'argument d'un nombre complexe ?

L'argument est un angle $ \theta $ qualifiant le nombre complexe $ z $ dans le plan complexe est noté arg ou Arg :

$ \arg(z) = 2\arctan \left( \frac{\Im(z)}{\Re(z) + |z|} \right) = \theta \mod 2\pi $

avec $ \Re(z) $ la partie réelle et $ \Im(z) $ la partie imaginaire de $ z $.

Exemple : Soit $ z = 1+i $, la partie réelle vaut $ 1 $, la partie imaginaire vaut $ 1 $ et le module du nombre complexe $ |z| $ vaut $ \sqrt(2) $, donc $ \arg(z) = 2 \arctan \left( \frac{1}{1 + \sqrt(2) } \right) = \frac{\pi}{4} $

Le résultat du calcul $ \arg(z) $ est une valeur entre $ -\pi $ et $ +\pi $ et la valeur de theta est modulo $ 2\pi $

En électricité, l'argument est équivalent à la phase (et le module est la valeur efficace).

Quelles sont les propriétés des arguments ?

Soient $ z $, $ z_1 $ et $ z_2 $ des nombres complexes non nuls et $ n $ est un nombre entier naturel. Les propriétés remarquables de la fonction argument sont :

$ \arg( z_1 \times z_2 ) \equiv \arg(z_1) + \arg(z_2) \mod 2\pi $

$ \arg( z^n ) \equiv n \times \arg(z) \mod 2\pi $

$ \arg( \frac{1}{z} ) \equiv -\arg(z) \mod 2\pi $

$ \arg( \frac{z_1}{z_2} ) \equiv \arg(z_1) - \arg(z_2) \mod 2\pi $

Soient $ a $ un réel strictement positif et $ b $ un réel strictement négatif, alors

$ \arg(a \cdot z) \equiv \arg(z) \mod 2\pi $

$ \arg(b \cdot z) \equiv \arg(z) +\pi \mod 2\pi $

Quel est l'argument du nombre 0 ?

L'argument de $ 0 $ vaut $ 0 $ (le nombre 0 a une partie réelle et complexe nulle et donc un argument nul).

Que signifie un argument égal à 0 ?

Si l'argument d'un nombre complexe est $ \arg(z) = 0 $ alors le nombre n'a pas de partie imaginaire (c'est un nombre réel).

Qu'est ce que l'argument principal ?

L'argument est un angle, généralement en radian. Les angles se répètent tous les $ 2\pi $ donc il y en a une infinité.

L'argument principal est celui qui est compris entre $ -\pi $ et $ \pi $ (mais parfois certains considèrent que c'est celui entre $ 0 $ et $ 2\pi $)

Pour calculer l'argument principal à partir d'un argument non principal lui ajouter ou retirer $ 2\pi $ autant de fois que nécessaire (calcul modulo $ 2\pi $)

dCode calcule toujours l'argument principal.

Code source

dCode se réserve la propriété du code source de l'outil 'Argument de Nombre Complexe' en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), tout algorithme pour 'Argument de Nombre Complexe', applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction liée à 'Argument de Nombre Complexe' (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codé en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) aucune donnée, téléchargement, script, copier-coller, ou accès API à 'Argument de Nombre Complexe' ne sera cédé gratuitement, idem pour un usage hors ligne, PC, tablette, appli iPhone ou Android ! dCode est gratuit est en ligne.

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Argument de Nombre Complexe', alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/argument-nombre-complexe
© 2021 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?