Outil pour convertir les nombres complexes en notation forme exponentielle et inversement en calculant les valeurs du modules et de l'argument principal du nombre complexe.
Forme Exponentielle Complexe - dCode
Catégorie(s) : Arithmétique, Géométrie
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !
Outil pour convertir les nombres complexes en notation forme exponentielle et inversement en calculant les valeurs du modules et de l'argument principal du nombre complexe.
La notation exponentielle d'un nombre complexe $ z $ d'argument $ \theta $ et de module $ r $ est : $$ z = r \operatorname{e}^{i\theta} $$
Exemple : $ z = 1+i $ a pour module $ \sqrt(2) $ et argument $ \pi/4 $ donc sa forme exponentielle complexe est $ z = \sqrt(2) e^{i\pi/4} $
dCode propose des fonctions de calcul de module de nombre complexe et de calcul d'argument de nombre complexe.
La formule d'Euler appliquée à un nombre complexe relie le cosinus et le sinus avec la notation exponentielle complexe : $$ e^{i\theta } = \cos {\theta} + i \sin {\theta} $$ avec $ \theta \in \mathbb{R} $
La conversion de coordonnées cartésiennes en coordonnées polaires pour les nombres complexe $ z = ai+b $ (avec $ (a,b) $ les coordonnées cartésiennes) est précisément d'écrire ce nombre sous forme exponentielle complexe afin d'en récupérer le module $ r $ et l'argument $ \theta $ (avec $ (r, \theta) $ les coordonnées polaires).
Si le nombre complexe n'a pas de partie imaginaire : $ e^{i0} = e^{0} = 1 $ ou $ e^{i\pi} = \cos(\pi) + i\sin(\pi) = -1 $
Si le nombre complexe n'a pas de partie réelle : $ e^{i(\pi/2)} = \cos{\pi/2} + i\sin{\pi/2} = i $ ou $ e^{i(-\pi/2)} = \cos{-\pi/2} + i\sin{-\pi/2} = -i $
dCode se réserve la propriété du code source du script Forme Exponentielle Complexe en ligne. Sauf code licence open source explicite (indiqué Creative Commons / gratuit), tout algorithme, applet, snippet ou logiciel (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction (convertir, résoudre, décrypter, encrypter, déchiffrer, chiffrer, décoder, traduire) codé en langage informatique (PHP, Java, C#, Python, Javascript, Matlab, etc.) dont dCode a les droits ne sera pas cédé gratuitement. Pour télécharger le script en ligne Forme Exponentielle Complexe pour un usage hors ligne, PC, iPhone ou Android, demandez un devis sur la page de contact !