Outil algorithmique pour infirmer la conjecture de Polya. La conjecture de Polya propose que le la majorité des nombres de facteurs premiers des nombres inférieurs à un entier précis est impaire.
Conjecture de Pólya - dCode
Catégorie(s) : Arithmétique, Algorithme
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !
En théorie des nombres, la conjecture de Pólya, proposée par le mathématicien hongrois George Pólya en 1919, stipule que pour tout entier $ N $, dans la décomposition en facteurs premiers des entiers naturels inférieurs à $ N $, il y a d'avantage de décompositions avec un nombre impair de facteurs que de décompositions avec un nombre pair de facteurs.
Cette conjecture est fausse, le premier contre-exemple est $ N = 906150257 $
Démontrer qu'une conjecture est vraie nécessite une démonstration mathématique rigoureuse. Pour démontrer que la conjecture est fausse, il est suffisant de donner un contre exemple.
Exemple : Pour $ N = 10 $, il y a 5 décompositions avec un nombre impair de facteurs pour les nombres $ 8, 7, 5, 3, 2 $, et 4 décompositions avec un nombre pair de facteurs : $ 9, 6, 4, 1 $. Comme $ 5 > 4 $, la conjecture est vraie pour $ N = 10 $, mais ça ne veut pas dire qu'elle est vraie pour tout $ N $.
La conjecture de Polya a été réfutée en 1958, elle est donc fausse. Le plus petit contre-exemple est le nombre $ 906150257 $.
L'algorithme correspondant à la vérification de la conjecture est similaire à celui-ci : // Javascript
var pair = 1;
var impair = 0;
var d = new Array();
for (i = 2; i < 4000000000; i++) {
d = decomposition_facteurs_premiers(i); // renvoie un tableau avec tous les facteurs
if (d.length % 2) impair++;
else pair++;
if (pair > impair) {
alert(i);
break;
}
dCode se réserve la propriété du code source pour "Conjecture de Pólya". Sauf code licence open source explicite (indiqué Creative Commons / gratuit), l'algorithme pour "Conjecture de Pólya", l'applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou les fonctions liées à "Conjecture de Pólya" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou les données, en téléchargement, script, ou les accès API à "Conjecture de Pólya" ne sont pas publics, idem pour un usage hors ligne, PC, mobile, tablette, appli iPhone ou Android !
Rappel : dCode est gratuit.
Le copier-coller de la page "Conjecture de Pólya" ou de ses résultats est autorisée (même pour un usage commercial) tant que vous créditez dCode !
L'exportation des résultats sous forme de fichier .csv ou .txt est gratuite en cliquant sur l'icone export
Citer comme source bibliographique :
Conjecture de Pólya sur dCode.fr [site web en ligne], consulté le 14/09/2024,