Search for a tool
Pólya Conjecture

Tool (algorithm) to invalidate the Polya conjecture. Polya's conjecture suggests that the majority of the prime factor numbers of numbers less than a precise integer is odd.

Results

Pólya Conjecture -

Tag(s) : Arithmetics, Algorithm

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Thanks to your feedback and relevant comments, dCode has developed the best 'Pólya Conjecture' tool, so feel free to write! Thank you!

Pólya Conjecture

Statement of the Conjecture

In number theory, Pólya's conjecture, proposed by the Hungarian mathematician George Pólya in 1919, states that for any integer $ N $, in the decomposition into prime factors of all natural integers less than $ N $, there are more decompositions with an odd number of factors than decompositions with an even number of factors.

This conjecture is false, the first counterexample is $ N = 906150257 $

Answers to Questions (FAQ)

How to prove the Polya conjecture?

To prove that a conjecture is true, a rigorous mathematical proof is needed. To prove that the conjecture is false, it is enough to give one counter-example.

Example: For $ N = 10 $, there are 5 decompositions with an odd number of factors: $ 8, 7, 5, 3, 2 $, and 4 decompositions with an even number of factors: $ 9, 6, 4, 1 $. Since $ 5 > 4 $, the conjecture is true for $ N = 10 $, but this does not mean that it is true for all $ N $.

What is the first counterexample?

The Polya conjecture was refuted in 1958, so it is false. The smallest counterexample is the number $ 906150257 $.

What is the Polya check algorithm?

The algorithm corresponding to the verification of the conjecture is similar to the following:// Javascript
var even = 1;
var odd = 0;
var d = new Array();
for (i = 2; i < 4000000000; i++) {
d = prime_factor_decomposition(i); // return a table with all factors
if (d.length % 2) odd++;
else even++;
if (even > odd) {
alert(i);
break;
}

Source code

dCode retains ownership of the online 'Pólya Conjecture' tool source code. Except explicit open source licence (indicated CC / Creative Commons / free), any 'Pólya Conjecture' algorithm, applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any 'Pólya Conjecture' function (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and no data download, script, copy-paste, or API access for 'Pólya Conjecture' will be for free, same for offline use on PC, tablet, iPhone or Android ! dCode is free and online.

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Thanks to your feedback and relevant comments, dCode has developed the best 'Pólya Conjecture' tool, so feel free to write! Thank you!


Source : https://www.dcode.fr/polya-conjecture
© 2021 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.
Feedback