Outil pour réaliser des changements de système de coordonnées dans l'espace 3D (cartésiennes, sphériques, cylindriques, etc.), des opérations géométriques pour représenter des éléments dans différents référentiels.
Systèmes de Coordonnées 3D - dCode
Catégorie(s) : Géométrie
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !
Outil pour réaliser des changements de système de coordonnées dans l'espace 3D (cartésiennes, sphériques, cylindriques, etc.), des opérations géométriques pour représenter des éléments dans différents référentiels.
A partir de coordonnées cartésiennes $ (x,y,z) $, le changement de base/référentiel vers des coordonnées sphériques $ (\rho,\theta,\varphi) $ suit les équations : $$ \rho = \sqrt{x^2 + y^2 + z^2} \\ \theta = \arccos \left( \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right) = \arccos \left( \frac{z}{\rho} \right) \\ \varphi = \arctan \left( \frac{y}{x} \right) $$
Exemple : Le point de l'espace en position $ (0,\sqrt{2},\sqrt{2}) $ en coordonnées cartésiennes est défini par les coordonnées sphériques $ \rho = 1 $, $ \theta = \pi/4 $ et $ \varphi = \pi/2 $
La conversion peut être vue comme deux conversions de coordonnées 2D cartésiennes vers polaires consécutives, d'abord une dans le plan $ xy $ pour convertir $ (x,y) $ en $ (R, \varphi) $ (avec $ R $ la projection de $ \rho $ sur le plan $ xy $, puis une seconde conversion dans le plan $ zR $ pour changer $ (z,R) $ en $ (\rho, \theta) $
NB : par convention, la valeur de $ \rho $ est positive, la valeur de $ \theta $ est comprise dans l'invervalle $ ] 0, \pi [ $ et la valeur de $ \varphi $ est comprise dans l'invervalle $ ] -\pi, \pi [ $
Si $ \rho = 0 $ alors les angles peuvent être définis par n'importe quels nombres réels de l'intervalle
A partir de coordonnées cartésiennes $ (x,y,z) $ le changement de base/référentiel vers des coordonnées cylindriques $ (r,\theta,z) $ suit les équations : $$ r = \sqrt{x^2 + y^2} \\ \theta = \arctan \left( \frac {y}{x} \right) \\ z = z $$
NB : par convention, la valeur de $ \rho $ est positive, la valeur de $ \theta $ est comprise dans l'invervalle $ ] -\pi, \pi [ $ et $ \varphi $ est un nombre réel
A partir de coordonnées sphériques $ (\rho,\theta,\varphi) $ le changement de base/référentiel vers des coordonnées cartésiennes $ (x,y,z) $ suit les équations : $$ x = r \sin\theta \cos\varphi \\ y = \rho \sin\theta \sin\varphi \\ z = \rho $$
A partir de coordonnées sphériques $ (r,\theta,\varphi) $ le changement de base/référentiel vers des coordonnées cylindriques $ (r,\theta^*,z) $ suit les équations : $$ r = \rho \sin \theta \\ \theta^* = \varphi \\ z = \rho \cos \theta $$
A partir de coordonnées cylindriques $ (r,\theta,z) $ le changement de base/référentiel vers des coordonnées cartésiennes $ (x,y,z) $ suit les équations : $$ x = r \cos\theta \\ y = r \sin\theta \\ z = z $$
A partir de coordonnées cylindriques $ (r,\theta^*,z) $ le changement de base/référentiel vers des coordonnées sphériques $ (\rho,\theta,\varphi) $ suit les équations : $$ \rho = \sqrt{r^2 + z^2} \\ \theta = \arctan \left( \frac{r}{z} \right) = \arccos \left( \frac{z}{\sqrt{r^2 + z^2}} \right) \\ \varphi = \theta^* $$
dCode se réserve la propriété du code source du script Systèmes de Coordonnées 3D en ligne. Sauf code licence open source explicite (indiqué Creative Commons / gratuit), tout algorithme, applet, snippet ou logiciel (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction (convertir, résoudre, décrypter, encrypter, déchiffrer, chiffrer, décoder, traduire) codé en langage informatique (PHP, Java, C#, Python, Javascript, Matlab, etc.) dont dCode a les droits ne sera pas cédé gratuitement. Pour télécharger le script en ligne Systèmes de Coordonnées 3D pour un usage hors ligne, PC, iPhone ou Android, demandez un devis sur la page de contact !