Tool to compute derivatives. The differentiation is a fundamental tool when analyzing a function, it allows to measure the sensitivity to change of a function.

Derivative - dCode

Tag(s) : Mathematics

dCode is free and its tools are a valuable help in games, puzzles and problems to solve every day!

You have a problem, an idea for a project, a specific need and dCode can not (yet) help you? You need custom development? *Contact-me*!

This page is using the new English version of dCode, *please make comments* !

Sponsored ads

This script has been updated, please report any problems.

Tool to compute derivatives. The differentiation is a fundamental tool when analyzing a function, it allows to measure the sensitivity to change of a function.

Mathematicians have defined derivatives using the formula $$ \frac{d}{dx}f = f'(x) = \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} $$ The derivative calculation is the inverse operation of primitive calculation. dCode knows all derivatives, one has only to indicate the function and the deriving variable.

$$ f(x) = x^2+\sin(x) \Rightarrow f'(x) = 2 x+\cos(x) $$

The more useful derivatives are:

Name | Function | Derivative |
---|---|---|

constant | $$ k, in, \mathbb{R} $$ | $$ 0 $$ |

variable | $$ x $$ | $$ 1 $$ |

power n | $$ x^n $$ | $$ n x^{n-1} $$ |

negative power | $$ x^{-n} $$ | $$ -n x^{-n-1} $$ |

fraction | $$ \frac{1}{x} $$ | $$ -\frac{1}{x^2} $$ |

inverse power | $$ \frac1{x^n} $$ | $$ -\frac n{x^{n+1}} $$ |

root | $$ \sqrt{x} $$ | $$ \frac 1{2\sqrt{x}} $$ |

nth root | $$ \sqrt[n]x $$ | $$ \frac1{n\sqrt[n]{x^{n-1}}} $$ |

fractional power | $$ x^{1/n} $$ | $$ (1/n)x^{(1/n)-1} $$ |

natural logarithm | $$ \ln |x| $$ | $$ \frac{1}{x} $$ |

logarithm base a | $$ \log_a |x| $$ | $$ \frac{1}{x \ln a} $$ |

exponential | $$ e^x $$ | $$ e^x $$ |

exponent | $$ a^x $$ | $$ a^x \ln a $$ |

sinus | $$ \sin x $$ | $$ \cos x $$ |

cosinus | $$ \cos x $$ | $$ - \sin x $$ |

tangent | $$ \tan x $$ | $$ \frac{1}{\cos^2 x} = 1+\tan^2 x $$ |

cotangent | $$ \cot x $$ | $$ - \frac{1}{\sin^2 x} = -1-\cot^2 x $$ |

arcsinus | $$ \arcsin x $$ | $$ \frac{1}{\sqrt{1-x^2}} $$ |

arccosinus | $$ \arccos x $$ | $$ -\frac{1}{\sqrt{1-x^2}} $$ |

arctangent | $$ \arctan x $$ | $$ \frac{1}{1+x^2} $$ |

sinus hyperbolic | $$ \sinh x $$ | $$ \cosh x $$ |

cosinus hyperbolic | $$ \cosh x $$ | $$ \sinh x $$ |

tangent hyperbolic | $$ \tanh x $$ | $$ \frac{1}{\cosh^2 x} = 1 - \tanh^2 x $$ |

cotangent | $$ \coth $$ | $$ \frac{-1}{\sinh^2 x} = 1 - \coth^2 x $$ |

arcsinus hyperbolic | $$ \arcsinh x $$ | $$ \frac{1}{\sqrt{1+x^2}} $$ |

arccosinus hyperbolic | $$ \arccosh x $$ | $$ \frac{1}{\sqrt{x^2-1}} $$ |

arctangent hyperbolic | $$ \arctanh x $$ | $$ \frac{1}{1-x^2} $$ |

It is equivalent to compute the derivative twice, for dCode, indicate twice the same variable.

dCode retains ownership of the source code of the script Derivative. Except explicit open source licence (free / freeware), any algorithm, applet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any snippet or function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in PHP (or Java, C#, Python, Javascript, etc.) which dCode owns rights can be transferred after sales quote. So if you need to download the Derivative script for offline use, for you, your company or association, see you on contact page !

derivative,function,differentiation,calculus,integrate,velocity,acceleration

Source : http://www.dcode.fr/derivative

© 2017 dCode — The ultimate 'toolkit' website to solve every problem. dCode