Search for a tool
Primitives Functions

Tool to find primitives of a function. Integration of a function is the calculation of all its primitives, the inverse of the derivative.

Results

Primitives Functions -

Tag(s) : Mathematics

dCode and you

dCode is free and its tools are a valuable help in games, puzzles and problems to solve every day!
You have a problem, an idea for a project, a specific need and dCode can not (yet) help you? You need custom development? Contact-me!

Team dCode read all messages and answer them if you leave an email (not published). It is thanks to you that dCode has the best Primitives Functions tool. Thank you.

# Primitives Functions

## Primitive Function Calculator

Tool to find primitives of a function. Integration of a function is the calculation of all its primitives, the inverse of the derivative.

### How to calculate a primitive/integral?

The primitive of a function $$f$$ defined over an interval $$I$$ is a function $$F$$, defined and differentiable over $$I$$, which derivative is $$f$$, ie. $$F'(x) = f(x)$$.

Example: Consider $$f(x) = x^2+sin(x)$$ the the primitive is $$F(x) = \frac{1}{3}x^3-cos(x) + C$$ (with $$C$$ a constant).

dCode knows all functions and their primitives. Enter the function and its variable to integrate and dCode do the computation of the primitive function.

Mathematicians talks about finding the function calculating the area under the curve.

### What is the list of common primitives?

FunctionPrimitive
$$\int \,\rm dx$$$$x + C$$
$$\int x^n\,\rm dx$$$$\frac{x^{n+1}}{n+1} + C \qquad n \ne -1$$
$$\int \frac{1}{x}\,\rm dx$$$$\ln \left| x \right| + C \qquad x \ne 0$$
$$\int \frac{1}{x-a} \, \rm dx$$$$\ln | x-a | + C \qquad x \ne a$$
$$\int \frac{1}{(x-a)^n} \, \rm dx$$$$-\frac{1}{(n-1)(x-a)^{n-1}} + C \qquad n \ne 1 , x \ne a$$
$$\int \frac{1}{1+x^2} \, \rm dx$$$$\operatorname{arctan}(x) + C$$
$$\int \frac{1}{a^2+x^2} \, \rm dx$$$$\frac{1}{a}\operatorname{arctan}{ \left( \frac{x}{a} \right) } + C \qquad a \ne 0$$
$$\int \frac{1}{1-x^2} \, \rm dx$$$$\frac{1}{2} \ln { \left| \frac{x+1}{x-1} \right| } + C$$
$$\int \ln (x)\,\rm dx$$$$x \ln (x) - x + C$$
$$\int \log_b (x)\,\rm dx$$$$x \log_b (x) - x \log_b (e) + C$$
$$\int e^x\,\rm dx$$$$e^x + C$$
$$\int a^x\,\rm dx$$$$\frac{a^x}{\ln (a)} + C \qquad a > 0 , a \ne 1$$
$$\int {1 \over \sqrt{1-x^2}} \, \rm dx$$$$\operatorname{arcsin} (x) + C$$
$$\int {-1 \over \sqrt{1-x^2}} \, \rm dx$$$$\operatorname{arccos} (x) + C$$
$$\int {x \over \sqrt{x^2-1}} \, \rm dx$$$$\sqrt{x^2-1} + C$$
$$\int \sin(x)\,\rm dx$$$$-\cos(x)+C$$
$$\int \cos(x)\,\rm dx$$$$\sin(x)+C$$
$$\int \tan(x)\,\rm dx$$$$-\ln|\cos(x)|+C$$