Rechercher un outil
Décomposition en 2 Facteurs

Outil pour décomposer un nombre en 2 facteurs, cette décomposition consiste à retrouver 2 diviseurs qui multipliés entre deux donne N.

Résultats

Décomposition en 2 Facteurs -

Catégorie(s) : Arithmétique

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Décomposition en 2 Facteurs', alors écrivez-nous c'est gratuit ! Merci !

Décomposition en 2 Facteurs

Annonces sponsorisées

Factorisation en Deux Entiers


Factorisation en Nombres Premiers

Réponses aux Questions (FAQ)

Qu'est ce que la factorisation en 2 entiers ? (Définition)

Tout nombre $ N $ possède des diviseurs, au minimum 2 ($ 1 $ et $ N $ sont les diviseurs de tous nombres) si le nombre $ N $ est premier, mais souvent bien plus lorsque $ N $ est composé ($ N $ n'est pas premier).

Il est donc toujours possible de factoriser un nombre en 2 entiers, et il y a souvent plusieurs façons possibles.

Exemple : $ 6 = 1 \times 6 = 2 \times 3 = 3 \times 2 = 6 \times 1 $

Comment retrouver 2 facteurs d'un nombre ?

Effectuer une recherche de tous les diviseurs du nombre N. Toutes les combinaisons de 2 facteurs ayant pour produit le nombre N sont les couples $ d_1, d_2 $ avec $ d_1 $ un diviseur et $ d_2 = N / d_1 $ le résultat de la division.

Exemple : 12 peut se décomposer en produits de facteurs premiers : 2*2*3. La liste des diviseurs de 12 est donc composée de 2, 3 mais aussi 2*2=4 et 2*3=6. Ainsi s'en déduisent les couples de deux facteurs : 2*6=12 et 3*4=12 (Il y a aussi 12*1=12 mais il est évident).

A noter que N est un multiple de tous les nombres diviseurs trouvés.

La liste obtenue est exhaustive sauf s'il y a un trop grand nombre de facteurs à afficher, le programme pourra alors se limiter aux premiers résultats.

Pourquoi retrouver 2 facteurs d'un nombre ?

La factorisation en 2 entiers permet de résoudre $ a $ et $ b $ dans l'équation $ N = a \times b $. C'est-à-dire de trouver 2 diviseurs de $ N $.

Exemple : A partir d'une aire d'un rectangle, la factorisation permet de retrouver la hauteur et la longueur.

Comment lister les diviseurs d'un nombre ?

Utiliser l'outil de dCode listant les diviseurs des nombres.

Comment faire une décomposition en facteurs premiers ?

Utiliser l'outil de dCode pour la décomposition en facteurs premiers.

Code source

dCode se réserve la propriété du code source de "Décomposition en 2 Facteurs" en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), l'algorithme pour "Décomposition en 2 Facteurs", l'applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou les fonctions liée à "Décomposition en 2 Facteurs" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou les données, en téléchargement, script, ou copier-coller, ou les accès API à "Décomposition en 2 Facteurs" ne sont pas publics, idem pour un usage hors ligne, PC, tablette, appli iPhone ou Android ! Rappel : dCode est gratuit.

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Décomposition en 2 Facteurs', alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/decomposition-2-facteurs
© 2021 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?