Search for a tool
Complex Number Argument

Tool for calculating the value of the argument of a complex number. The argument of a nonzero complex number \( z \) is the value (in radians) of the angle \( \theta \) between the abscissa of the complex plane and the line formed by \( (0;z) \).

Results

Complex Number Argument -

Tag(s) : Mathematics

dCode and you

dCode is free and its tools are a valuable help in games, puzzles and problems to solve every day!
You have a problem, an idea for a project, a specific need and dCode can not (yet) help you? You need custom development? Contact-me!


Team dCode read all messages and answer them if you leave an email (not published). It is thanks to you that dCode has the best Complex Number Argument tool. Thank you.

Complex Number Argument

Sponsored ads

Argument Calculator


Tool for calculating the value of the argument of a complex number. The argument of a nonzero complex number \( z \) is the value (in radians) of the angle \( \theta \) between the abscissa of the complex plane and the line formed by \( (0;z) \).

Answers to Questions

How to calculate the argument of a complex number?

The argument is an angle \( \theta \) qualifying the complex number \( z \):

$$ \arg(z) = 2\arctan \left(\frac{\Im(z)}{\Re(z) + |z|} \right) = \theta \mod 2\pi $$

with \( \Re(z) \) the real part and \( \Im(z) \) the imaginary part of \( z \).

Example: Consider \( z = 1+i \), the real part is \( 1 \), the imaginary part is \( 1 \) and the modulus of the complex number \( |z| \) equals \( \sqrt(2) \), so \( \arg(z) = 2 \arctan \left( \frac{1}{1 + \sqrt(2) } \right) = \frac{\pi}{4} \)

The result of the \( \arg(z) \) calculation is a value between \( -\pi \) and \( +\pi \) and the theta value is modulo \( 2\pi \)

The argument of \( 0 \) is \( 0 \).

What are the properties of arguments?

Consider \( z \), \( z_1 \) and \( z_2 \) be non-zero complex numbers and \( n \) is a natural integer. The remarkable properties of the argument function are:

$$ \arg( z_1 \times z_2 ) \equiv \arg(z_1) + \arg(z_2) \mod 2\pi $$

$$ \arg( z^n ) \equiv n \times \arg(z) \mod 2\pi $$

$$ \arg( \frac{1}{z} ) \equiv -\arg(z) \mod 2\pi $$

$$ \arg( \frac{z_1}{z_2} ) \equiv \arg(z_1) - \arg(z_2) \mod 2\pi $$

Consider \( a \) be a strictly positive real and \( b \) a strictly negative real, then

$$ \arg(a \cdot z) \equiv \arg(z) \mod 2\pi $$

$$ \arg(b \cdot z) \equiv \arg(z) +\pi \mod 2\pi $$

Ask a new question

Source code

dCode retains ownership of the source code of the script Complex Number Argument online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, etc.) which dCode owns rights can be transferred after sales quote. So if you need to download the online Complex Number Argument script for offline use, for you, your company or association, see you on contact page !

Questions / Comments


Team dCode read all messages and answer them if you leave an email (not published). It is thanks to you that dCode has the best Complex Number Argument tool. Thank you.


Source : https://www.dcode.fr/complex-number-argument
© 2017 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaches. dCode