Rechercher un outil
Suite de Conway

Outil pour générer des suites de Conway, une suite de chiffres (aussi appelée suite audioactive ou Look-and-Say) où chaque terme est l'énonciation des chiffres du terme précédent.

Résultats

Suite de Conway -

Catégorie(s) : Mathématiques, Fun/Divers

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Suite de Conway', alors écrivez-nous c'est gratuit ! Merci !

Suite de Conway

Annonces sponsorisées

Calculateur de la Suite de Conway




Générateur de la suite de Conway


Réponses aux Questions (FAQ)

Comment fonctionne la suite de Conway ?

Pour générer un terme de la suite, utiliser le précédent en le lisant chiffre après chiffre et regroupant les chiffres qui se répètent consécutivement. La suite commence généralement avec 1 comme premier terme (aussi appelé graine).

TermeSe litS'écrit
1un 111
11deux 121
21un 2 et un 11211
1211un 1, un 2 et deux 1111221
111221trois 1, deux 2 et un 1312211

La suite est donc 1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, ... (et est souvent utilisée comme une énigme, une suite logique, où le joueur doit deviner la suite)

La suite de Conway est aussi connue sous le nom de suite audioactive ou look and say.

La suite ayant pour graine 1 contient uniquement les chiffres 1,2 et 3.

Tous les termes commencent par 1 ou 3 sauf le 3ème.

La suite peut-elle contenir '333' ?

Raisonnement par l'absurde (dans l'hypothèse où la graine ne contient pas 333) :

Supposons que 333 apparait pour la première fois au terme n, alors le terme n-1 doit aussi contenir 333 (_333 ou 333_ ne peut apparaitre qu'avec une série de trois 3 au terme précédent). Contradiction, l'hypothèse est fausse, donc 333 n'apparait jamais.

Quelles sont les variantes de la suite de Conway ?

La suite de Conway est initialisée à 1 par défaut, mais il est possible d'envisager une graine différente.

Exemple : Pour les graines g de valeurs 2,3,4,5,6,7,8,9 ou 0 la suite obtenu est g, 1g, 111g, 311g, 13211g, 111312211g, ... (la graine est toujours à la fin).

Il est possible d'utiliser des règles légèrement différentes :

— lire le terme précédent et compter toutes les occurrences des nombres, listés par ordre croissant.

Exemple : 1, 11, 21, 1112, 3112, 211213, 312213, 212223, 114213, 31121314, 41122314, ...

— lire le terme précédent et compter toutes les occurrences des nombres, listés par ordre décroissant.

Exemple : 1, 11, 21, 1211, 1231, 131221, 132231, 232221, 134211, 14131231, 14231241, ...

— lire le terme précédent et compter toutes les occurrences des nombres, listés par ordre d'apparition.

Exemple : 1, 11, 21, 1211, 3112, 132112, 311322, 232122, 421311, 14123113 ...

La suite de Conway est similaire au run-length encoding.

Pourquoi la suite s'appelle suite de Conway ?

Cette suite a été inventée et analysée par le célèbre mathématicien John H. Conway.

Comment coder Conway en Javascript ?

// Yves PRATTER
// Version 1.0 - 2011/11/07
function previousConway(t) {
r = "";
if (t.length%2 == 1) return r; // impossible
idx = 0;
while (idx < t.length){
for(i=0; i < t.charAt(idx); i++) { r += t.charAt(idx+1); }
idx += 2;
}
return r;
}
function conway(t) {
if (t == "") return "0";
r = "";
idx = 0;
while (idx < t.length){
for(i=1; t.charAt(idx+i) == t.charAt(idx); i++) {}
r += i + t.charAt(idx);
idx += i;
}
return r;
}

Code source

dCode se réserve la propriété du code source de "Suite de Conway" en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), l'algorithme pour "Suite de Conway", l'applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou les fonctions liée à "Suite de Conway" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou les données, en téléchargement, script, ou copier-coller, ou les accès API à "Suite de Conway" ne sont pas publics, idem pour un usage hors ligne, PC, tablette, appli iPhone ou Android ! Rappel : dCode est gratuit.

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil 'Suite de Conway', alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/suite-conway
© 2021 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?