Rechercher un outil
Rang d'une Permutation

Outil pour calculer le rang d'une permutation d'un ensemble. Le rang d'une permutation est le numéro associé à celle-ci dans l'ordre de génération des permutations.

Résultats

Rang d'une Permutation -

Catégorie(s) : Combinatoire

Partager
Partager
dCode et vous

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Ecrire à dCode !


Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !


Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil de Rang d'une Permutation, alors écrivez-nous c'est gratuit ! Merci !

Rang d'une Permutation

Calculer l'ordre d'une Permutation


Voir aussi : Permutations

Trouver une Permutation selon son Rang/Ordre



Voir aussi : Permutations

Outil pour calculer le rang d'une permutation d'un ensemble. Le rang d'une permutation est le numéro associé à celle-ci dans l'ordre de génération des permutations.

Réponses aux Questions

Qu'est ce que le rang d'une permutation ?

A partir de la liste de toutes les permutations possibles d'un ensemble (ou arrangements), il est possible de trier cet index par ordre croissant. Le rang d'une permutation est la position de celle si dans la liste triée.

Exemple : L'ensemble A,B,C a pour permutations :

0ABC
1ACB
2BAC
3BCA
4CAB
5CBA
, ainsi la permutation BAC est au rang numéro 2 (en commençant à 0)

Comment calculer le rang d'une permutation ?

Comme il semble difficile de lister toutes les permutations lorsqu'il y a beaucoup d'éléments. Il existe une méthode mathématique pour réaliser ce calcul.

Soit une permutation $ P $ dans l'ensemble $ E $ de taille $ t $.

Exemple : La permutation B,A,C dans l'ensemble initial A,B,C de taille $ t = 3 $.

Pour chaque lettre, calculer la position $ p $ dans l'ensemble $ E $, calculer $ s = p \times (t-1)! $ et retirer la lettre dans l'ensemble $ E $ (la taille $ t $ diminue). La somme des $ s $ est le rang de la permutation.

Exemple : B est en position $ 1 $ dans ABC, $ s_B = 1 \times 2! = 2 $
A est en position $ 0 $ dans AC, $ s_A = 0 \times 1! = 0 $
C est en position $ 0 $ dans C, $ s_C = 0 \times 0! = 0 $
BAC est la permutation de rang $ s_B + s_A + s_C = 2 + 0 + 0 = 2 $

Code source

dCode se réserve la propriété du code source de l'outil 'Rang d'une Permutation' en ligne. Sauf code licence open source explicite (indiqué CC / Creative Commons / gratuit), tout algorithme, applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction (convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codé en langage informatique (PHP, Java, C#, Python, Javascript, Matlab, etc.) aucune donnée, script ou accès API ne sera cédé gratuitement, idem pour télécharger Rang d'une Permutation pour un usage hors ligne, PC, tablette, appli iPhone ou Android !

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord pour participer au forum d'entraide !

Questions / Commentaires

Grâce à vos remarques, réponses et commentaires pertinents, dCode peut développer le meilleur outil de Rang d'une Permutation, alors écrivez-nous c'est gratuit ! Merci !


Source : https://www.dcode.fr/rang-permutation
© 2020 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
Un problème ?