Search for a tool
Goldbach Conjecture

Tool to check the Goldbach conjecture. The Goldbach conjecture proposes that any even integer number (greater than 2) can be written as the sum of two prime numbers.

Results

Goldbach Conjecture -

Tag(s) : Arithmetics

dCode and you

dCode is free and its tools are a valuable help in games, puzzles and problems to solve every day!
You have a problem, an idea for a project, a specific need and dCode can not (yet) help you? You need custom development? Contact-me!


Team dCode likes feedback and relevant comments; to get an answer give an email (not published). It is thanks to you that dCode has the best Goldbach Conjecture tool. Thank you.

Goldbach Conjecture

Sponsored ads

Conjecture Tester


Tool to check the Goldbach conjecture. The Goldbach conjecture proposes that any even integer number (greater than 2) can be written as the sum of two prime numbers.

Answers to Questions

What is Goldbach's conjecture?

The Goldbach conjecture is a still unproved proposition that any even integer (strictly greater than 2) can be written as the sum of 2 prime numbers.

Example: Decompositions in sum of 2 prime numbers: 4 = 2 + 2, 10 = 3 + 7 = 5 + 5, and so on.

Informatically, it is verified for all the even integers up to one billion of billion (and surely more advantage today because calculations are still in progress).

The program is limited to even integers less than 10^9 and also limited in number of decompositions.

What is the demonstration of the Goldbach's conjecture?

As the name suggests it is a conjecture, so to date it has no mathematical demonstration. Mathematicians suppose it to be true, and it is computer-verified up to very large numbers, but it does not prove that it is true for all numbers.

What is the verification algorithm of the Goldbach conjecture?

The algorithm is similar to that of a prime factors decomposition. It is possible to speed up the calculations by using an already calculated list of prime numbers.

// Javascript limited to n = 200
var pr = new Array(3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97);
function goldback(n) {
for (p in pr) {
if (pr[p] <= n/2 && in_array(n-pr[p], pr)) {
return n+=+pr[p]+++(n-pr[p]);
}
}
}

Ask a new question

Source code

dCode retains ownership of the source code of the script Goldbach Conjecture online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be given for free. To download the online Goldbach Conjecture script for offline use on PC, iPhone or Android, ask for price quote on contact page !

Questions / Comments


Team dCode likes feedback and relevant comments; to get an answer give an email (not published). It is thanks to you that dCode has the best Goldbach Conjecture tool. Thank you.


Source : https://www.dcode.fr/goldbach-conjecture
© 2018 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaches. dCode
Feedback