Tool to calculate the Jordan Normal Form of a Matrix (by Jordan reduction of a square matrix). The Jordan matrix is used in analysis, from a matrix M, the Jordan decomposition provides 2 matrices S and J such that \( M = S. J. \bar{S} \).

Jordan Normal Form Matrix - dCode

Tag(s) : Matrix

dCode is free and its tools are a valuable help in games, puzzles and problems to solve every day!

You have a problem, an idea for a project, a specific need and dCode can not (yet) help you? You need custom development? *Contact-me*!

Sponsored ads

Tool to calculate the Jordan Normal Form of a Matrix (by Jordan reduction of a square matrix). The Jordan matrix is used in analysis, from a matrix M, the Jordan decomposition provides 2 matrices S and J such that \( M = S. J. \bar{S} \).

Consider \( M \) a square matrix of size \( n \), which has for eigen values the set of \( \lambda_n \).

Example: $$ M = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 1 & 2 \end{bmatrix} \Rightarrow \lambda_n = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} $$

A matrix \( M \) of size \( n \times n \) is diagonalizable if and only if the sum of the dimensions of its eigen spaces is \( n \).

If \( M \) is not diagonalisable, there exists an almost diagonal matrix \( J \), called Jordan Normal Form, of the form $$ \begin{bmatrix} \lambda_i & 1 & \; & \; \\ \; & \lambda_i & \ddots & \; \\ \; & \; & \ddots & 1 \\ \; & \; & \; & \lambda_i \end{bmatrix} $$

Example: Here, \( M \) has only 2 eigen vectors : \( v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \) et \( v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \), so is not diagonalizable, but has for Jordan matrix (canonical form) $$ M=\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix} $$

Example: Alternative method: calculate the matrix \( S \) by finding a third vector \( v_3 \) such as \( (M - 3 I_3) v_3 = k_1 v_1 + k_2 v_2 \Rightarrow v_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \). So $$ S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} $$ and \( M = S . J . \bar{S} \)

If \( M = SJS^{-1} \) Then \( M^k = SJ^kS^{-1} \).

dCode retains ownership of the source code of the script Jordan Normal Form Matrix online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be given for free. So if you need to download the online Jordan Normal Form Matrix script for offline use, check contact page !

jordan,matrix,reduction,decomposition,normal,form,canonical

Source : https://www.dcode.fr/matrix-jordan

© 2018 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaches. dCode