Tool to calculate eigenspaces associated to eigenvalues of any size matrix (also called vectorial spaces Vect).
Eigenspaces of a Matrix - dCode
Tag(s) : Matrix
dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!
For a matrix $ M $ having for eigenvalues $ \lambda_i $, an eigenspace $ E $ associated with an eigenvalue $ \lambda_i $ is the set (the basis) of eigenvectors $ \vec{v_i} $ which have the same eigenvalue.
That is to say the kernel (or nullspace) of $ M - I \lambda_i $.
For an eigenvalue $ \lambda_i $, calculate the matrix $ M - I \lambda_i $ (with I the identity matrix) (also works by calculating $ I \lambda_i - M $) and calculate for which set of vector $ \vec{v} $, the product of my matrix by the vector is equal to the null vector $ \vec{0} $
Example: The 2x2 matrix $ M = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} $ has eigenvalues $ \lambda_1 = -3 $ and $ \lambda_2 = 1 $, the computation of the proper set associated with $ \lambda_1 $ is $ \begin{bmatrix} -1 + 3 & 2 \\ 2 & -1 + 3 \end{bmatrix} . \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} $ which has for solution $ v_1 = -v_2 $. The eigenspace $ E_{\lambda_1} $ is therefore the set of vectors $ \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} $ of the form $ a \begin{bmatrix} -1 \\ 1 \end{bmatrix} , a \in \mathbb{R} $. The vector space is written $ \text{Vect} \left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\} $
To construct a basis for an eigenspace associated with its eigenvalues $ \lambda $ and its corresponding eigenvectors $ \vec{v} $, select a linearly independent set of these vectors.
This set of linearly independent vectors forms a basis of the eigenspace.
dCode retains ownership of the "Eigenspaces of a Matrix" source code. Any algorithm for the "Eigenspaces of a Matrix" algorithm, applet or snippet or script (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or any "Eigenspaces of a Matrix" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) or any database download or API access for "Eigenspaces of a Matrix" or any other element are not public (except explicit open source licence). Same with the download for offline use on PC, mobile, tablet, iPhone or Android app.
Reminder: dCode is an educational and teaching resource, accessible online for free and for everyone.
The content of the page "Eigenspaces of a Matrix" and its results may be freely copied and reused, including for commercial purposes, provided that dCode.fr is cited as the source (Creative Commons CC-BY free distribution license).
Exporting the results is free and can be done simply by clicking on the export icons ⤓ (.csv or .txt format) or ⧉ (copy and paste).
To cite dCode.fr on another website, use the link:
In a scientific article or book, the recommended bibliographic citation is: Eigenspaces of a Matrix on dCode.fr [online website], retrieved on 2025-06-15,