Search for a tool
Von Mangoldt Function

Tool to calculate von Mangoldt Lambda Λ function values. Mangoldt's Λ function is an arithmetic function with properties related to prime numbers.

Results

Von Mangoldt Function -

Tag(s) : Arithmetics

Share dCode and you

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!

Team dCode likes feedback and relevant comments; to get an answer give an email (not published). It is thanks to you that dCode has the best Von Mangoldt Function tool. Thank you.

# Von Mangoldt Function

## Lambda Λ(n) Calculator

Tool to calculate von Mangoldt Lambda Λ function values. Mangoldt's Λ function is an arithmetic function with properties related to prime numbers.

### What is the Von Mangoldt Lambda function? (Definition)

The function $\Lambda (n)$ (called Mangoldt Lambda) is defined by: $$\Lambda (n)= {\begin{cases}\ln p & {\mbox{if }}n=p^{k} \\ 0 & {\mbox{else}} \end{cases} }$$

with $p$ a prime number and $k \in \mathbb{N}, k \geq 1$ (a nonzero positive integer).

This is the natural logarithm $\log (n) = \ln (n)$

Example: The values of $\Lambda (n)$ for the first values of $n$ are:

nΛ(n)
10
2$\ln 2$
3$\ln 3$
4$\ln 2$
5$\ln 5$
6$0$
7$\ln 7$
8$\ln 2$
9$\ln 3$

### What are the properties of the Von Mangoldt Lambda function?

By its definition, the Von Mangoldt Lambda function $\Lambda (n)$ allows to describe the value of the natural logarithm $\ln n$ : $$\ln n=\sum _{d\mid n}\Lambda (d)$$ with $d$ a natural integer that divides $n$.

Example: \begin{align}\sum_{d \mid 8} \Lambda(d) &= \Lambda(1) + \Lambda(2) + \Lambda(4) + \Lambda(8) \\ &= \Lambda(1) + \Lambda(2) + \Lambda (2^2) + \Lambda(2^3) \\ &= 0 + \ln(2) + \ln(2) + \ln(2) \\ &=\ln (2 \times 2 \times 2) \\ &= \ln(8) \end{align}

### What is the link with the Euler–Mascheroni gamma constant?

The Hans Von Mangoldt Lambda function can be used to calculate $\gamma$ the Euler-Mascheroni constant with the la formula : $$\sum_{n=2}^{\infty}{\frac{\Lambda(n)-1}{n}}=-2\gamma$$

## Source code

dCode retains ownership of the source code of the script Von Mangoldt Function online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online Von Mangoldt Function script for offline use on PC, iPhone or Android, ask for price quote on contact page !