Search for a tool
Von Mangoldt Function

Tool to calculate von Mangoldt Lambda Λ function values. Mangoldt's Λ function is an arithmetic function with properties related to prime numbers.

Results

Von Mangoldt Function -

Tag(s) : Arithmetics

Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Feedback and suggestions are welcome so that dCode offers the best 'Von Mangoldt Function' tool for free! Thank you!

# Von Mangoldt Function

## Answers to Questions (FAQ)

### What is the Von Mangoldt Lambda function? (Definition)

The function $\Lambda (n)$ (called Mangoldt Lambda) is defined by: $$\Lambda (n)= {\begin{cases}\ln(p) & {\mbox{if }}n=p^{k} \\ 0 & {\mbox{else}} \end{cases} }$$

with $p$ a prime number and $k \in \mathbb{N}, k \geq 1$ (a nonzero positive integer).

This is the natural logarithm $\log (n) = \ln (n)$

Example: The values of $\Lambda (n)$ for the first values of $n$ are:

nΛ(n)
10
2$\ln 2$
3$\ln 3$
4$\ln 2$
5$\ln 5$
6$0$
7$\ln 7$
8$\ln 2$
9$\ln 3$

### What are the first Lambda function values?

The values of $\Lambda (n)$ for the first values of $n$ are:

nΛ(n)
10
2$\ln 2$
3$\ln 3$
4$\ln 2$
5$\ln 5$
6$0$
7$\ln 7$
8$\ln 2$
9$\ln 3$

It is possible to calculate the values of $\exp{\Lambda}(n)$ in order to always obtain integers, see the OEIS sequence here

### What are the properties of the Von Mangoldt Lambda function?

By its definition, the Von Mangoldt Lambda function $\Lambda (n)$ allows to describe the value of the natural logarithm $\ln n$ : $$\ln n=\sum _{d\mid n}\Lambda (d)$$ with $d$ a natural integer that divides $n$.

Example: \begin{align}\sum_{d \mid 8} \Lambda(d) &= \Lambda(1) + \Lambda(2) + \Lambda(4) + \Lambda(8) \\ &= \Lambda(1) + \Lambda(2) + \Lambda (2^2) + \Lambda(2^3) \\ &= 0 + \ln(2) + \ln(2) + \ln(2) \\ &=\ln (2 \times 2 \times 2) \\ &= \ln(8) \end{align}

### What is the link with the Euler–Mascheroni gamma constant?

The Hans Von Mangoldt Lambda function can be used to calculate $\gamma$ the Euler-Mascheroni constant with the la formula: $$\sum_{n=2}^{\infty}{\frac{\Lambda(n)-1}{n}}=-2\gamma$$

## Source code

dCode retains ownership of the "Von Mangoldt Function" source code. Except explicit open source licence (indicated Creative Commons / free), the "Von Mangoldt Function" algorithm, the applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or the "Von Mangoldt Function" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and all data download, script, or API access for "Von Mangoldt Function" are not public, same for offline use on PC, mobile, tablet, iPhone or Android app!
Reminder : dCode is free to use.

## Cite dCode

The copy-paste of the page "Von Mangoldt Function" or any of its results, is allowed (even for commercial purposes) as long as you credit dCode!
Exporting results as a .csv or .txt file is free by clicking on the export icon
Cite as source (bibliography):
Von Mangoldt Function on dCode.fr [online website], retrieved on 2024-08-13, https://www.dcode.fr/mangoldt-lambda

## Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

## Questions / Comments

Feedback and suggestions are welcome so that dCode offers the best 'Von Mangoldt Function' tool for free! Thank you!

https://www.dcode.fr/mangoldt-lambda
© 2024 dCode — El 'kit de herramientas' definitivo para resolver todos los juegos/acertijos/geocaching/CTF.

Feedback