Tool to calculate von Mangoldt Lambda Λ function values. Mangoldt's Λ function is an arithmetic function with properties related to prime numbers.

Von Mangoldt Function - dCode

Tag(s) : Arithmetics

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!

A suggestion ? a feedback ? a bug ? an idea ? *Write to dCode*!

The function $ \Lambda (n) $ (called Mangoldt Lambda) is defined by: $$ \Lambda (n)= {\begin{cases}\ln(p) & {\mbox{if }}n=p^{k} \\ 0 & {\mbox{else}} \end{cases} } $$

with $ p $ a prime number and $ k \in \mathbb{N}, k \geq 1 $ (a nonzero positive integer).

This is the natural logarithm $ \log (n) = \ln (n) $

__Example:__ The values of $ \Lambda (n) $ for the first values of $ n $ are:

n | Λ(n) |
---|---|

1 | 0 |

2 | $ \ln 2 $ |

3 | $ \ln 3 $ |

4 | $ \ln 2 $ |

5 | $ \ln 5 $ |

6 | $ 0 $ |

7 | $ \ln 7 $ |

8 | $ \ln 2 $ |

9 | $ \ln 3 $ |

The values of $ \Lambda (n) $ for the first values of $ n $ are:

n | Λ(n) |
---|---|

1 | 0 |

2 | $ \ln 2 $ |

3 | $ \ln 3 $ |

4 | $ \ln 2 $ |

5 | $ \ln 5 $ |

6 | $ 0 $ |

7 | $ \ln 7 $ |

8 | $ \ln 2 $ |

9 | $ \ln 3 $ |

It is possible to calculate the values of $ \exp{\Lambda}(n) $ in order to always obtain integers, see the OEIS sequence here (link)

By its definition, the Von Mangoldt Lambda function $ \Lambda (n) $ allows to describe the value of the natural logarithm $ \ln n $ : $$ \ln n=\sum _{d\mid n}\Lambda (d) $$ with $ d $ a natural integer that divides $ n $.

__Example:__ $$ \begin{align}\sum_{d \mid 8} \Lambda(d) &= \Lambda(1) + \Lambda(2) + \Lambda(4) + \Lambda(8) \\ &= \Lambda(1) + \Lambda(2) + \Lambda (2^2) + \Lambda(2^3) \\ &= 0 + \ln(2) + \ln(2) + \ln(2) \\ &=\ln (2 \times 2 \times 2) \\ &= \ln(8) \end{align} $$

The Hans Von Mangoldt Lambda function can be used to calculate $ \gamma $ the Euler-Mascheroni constant with the la formula: $$ \sum_{n=2}^{\infty}{\frac{\Lambda(n)-1}{n}}=-2\gamma $$

dCode retains ownership of the "Von Mangoldt Function" source code. Except explicit open source licence (indicated Creative Commons / free), the "Von Mangoldt Function" algorithm, the applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or the "Von Mangoldt Function" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and all data download, script, or API access for "Von Mangoldt Function" are not public, same for offline use on PC, mobile, tablet, iPhone or Android app!

Reminder : dCode is free to use.

The copy-paste of the page "Von Mangoldt Function" or any of its results, is allowed as long as you cite dCode!

Cite as source (bibliography):

*Von Mangoldt Function* on dCode.fr [online website], retrieved on 2022-10-05,

mangoldt,lambda,function,hans,von

https://www.dcode.fr/mangoldt-lambda

© 2022 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.

Feedback