Outil pour déchiffrer/chiffrer avec Collon. Le chiffre de Collon est un système de chiffrement utilisant une grille pour convertir des lettres en bigrammes.
Chiffre de Collon - dCode
Catégorie(s) : Chiffrement Polygrammique
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les énigmes et les problèmes à résoudre au quotidien !
Vous avez un problème, une idée de projet, besoin d'un outil spécifique et dCode ne peut pas (encore) vous aider ? Vous désirez une prestation de développement sur mesure ? Contactez-moi !
Annonces sponsorisées
Outil pour déchiffrer/chiffrer avec Collon. Le chiffre de Collon est un système de chiffrement utilisant une grille pour convertir des lettres en bigrammes.
Le chiffrement de Collon utilise une grille (généralement 5x5) et nécessite un nombre N pour séparer le texte en séries de lettres de longueur N.
Exemple : Chiffrer DCODE des séries de N=3, soit DCO,DE et la grille
\ | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | A | B | C | D | E |
2 | F | G | H | I | J |
3 | K | L | M | N | O |
4 | P | Q | R | S | T |
5 | U | V | X | Y | Z |
Pour chaque série de N caractères, et pour chaque lettre de la série, commencer par repérer la lettre dans la grille et noter la lettre située au début de la ligne et celle située en bas de la colonne.
Exemple :
Lettre | En-tête de ligne | Bas de colonne |
---|---|---|
D | A | Y |
C | A | X |
O | K | Z |
Une fois la série terminée, inscrire consécutivement dans le message chiffré les N débuts de lignes et les N bas de colonnes trouvés.
Exemple : Le chiffrement de DCO correspond à AAK,YXZ
Le message chiffré complet est AAKYXZAAYZ.
Le déchiffrement de Collon nécessite la connaissance de la grille et du nombre N.
Exemple : Déchiffrer AKKXZVKKKVZY, avec N=3 et la grille
\ | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | A | B | C | D | E |
2 | F | G | H | I | J |
3 | K | L | M | N | O |
4 | P | Q | R | S | T |
5 | U | V | X | Y | Z |
Découper le message en groupes de lettres de taille 2N
Exemple : AKKXZV,KKKVZY
Scinder chaque groupe en 2, afin d'obtenir 2 sous-groupes de lettres de tailles identiques.
Exemple : AKK,XZV
Prendre les nièmes lettres de chaque sous-groupe pour obtenir N bigrammes
Exemple : AX,KZ,KV
Pour chaque bigramme (L1,L2), repérer la lettre à l'intersection de la ligne contenant L1 et de la colonne contenant L2
Exemple : La lettre à l'intersection de la ligne contenant A et de la colonne contenant K est la lettre C (lettre du message clair)
Répéter l'opération pour retrouver chaque lettre du message clair.
Exemple : Le message clair est COLLON
Le message est
- de longueur paire
- composé de 9 caractères distincts maximum
- composés de blocs de N caractères contenant 5 caractères distincts maximum
Il est possible de retrouver les lettres formant la première colonne et la dernière ligne en testant les toutes les longueurs de série possibles de 1 à n/2 (ou n = longueur du texte chiffré).
Pour chaque longueur de série, il est possible de reconstituer les bigrammes et de tester leur validité (9 caractères distincts maxi, 5 caractères au début et à la fin, 1 seul caractère commun, etc.)
Ainsi, pour les longueurs ne rencontrant pas de contradiction avec les règles de chiffrement, les lettres de la première colonne et de la dernière ligne peuvent être déduites.
Il est alors possible de créer une grille et d'attaquer le cryptogramme tel un chiffre de substitution.
Exemple : Si la grille de chiffrement est constituée à partir d'un mot clé n'interferrant pas dans la composition de la dernière ligne de la grille (moins de 20 lettres distinctes), alors les lettres de la dernière ligne suivront l'ordre alphabétique (et seront souvent UVXYZ si le W est omis).
Si un bigramme est formé d'une double lettre (exemple AA), alors la lettre claire correspondant au bigramme chiffré est ladite lettre (exemple UU donne U).
Le chiffre a plusieurs variantes envisageables
- l'utilisation d'autres coordonnées que la droite de la ligne et le bas de colonne (haut de colonne, bas de ligne)
- le changement d'ordre des coordonnées, inverser la lettre coordonnée de la ligne et la lettre coordonnée de la colonne
- l'utilisation d'une valeur de N variable (non disponible sur dCode)
dCode se réserve la propriété du code source du script Chiffre de Collon en ligne. Sauf code licence open source explicite (indiqué Creative Commons / gratuit), tout algorithme, applet, snippet ou logiciel (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction (convertir, résoudre, décrypter, encrypter, déchiffrer, chiffrer, décoder, traduire) codé en langage informatique (PHP, Java, C#, Python, Javascript, Matlab, etc.) dont dCode a les droits ne sera pas cédé gratuitement. Pour télécharger le script en ligne Chiffre de Collon pour un usage hors ligne, PC, iPhone ou Android, demandez un devis sur la page de contact !