Search for a tool
Three Squares Cipher

Tool to decrypt/encode with the three-square cipher which uses 3 grids to extract letters in rows or columns with a notion of randomness.

Results

Three Squares Cipher -

Tag(s) : Polygrammic Cipher, GRID_CIPHER

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Feedback and suggestions are welcome so that dCode offers the best 'Three Squares Cipher' tool for free! Thank you!

Three Squares Cipher

Three Squares Decoder

 


Loading...
(if this message do not disappear, try to refresh this page)

Loading...
(if this message do not disappear, try to refresh this page)

Loading...
(if this message do not disappear, try to refresh this page)

 

Three Squares Encoder

 


Loading...
(if this message do not disappear, try to refresh this page)

Loading...
(if this message do not disappear, try to refresh this page)

Loading...
(if this message do not disappear, try to refresh this page)


Answers to Questions (FAQ)

What is the Three Squares cipher? (Definition)

The 3-square cipher is a polygrammic cipher using 3 grids. From plain text bigrams, it generates ciphered trigrams according to the position of the letters in the three grids.

How to encrypt using Three Squares cipher?

3-square encryption is done with three grids (possibly generated from a keyword or disordered alphabet)

Example: Encrypt MESSAGE with the keys ONE, TWO, THREE corresponding to the grids

(2)
\12345
1TWOAB
2CDEFG
3HIJKL
4MNPQR
5SUVXY
\12345
1ONEAB
2CDFGH
3IJKLM
4PQRST
5UVWXY
(1)
\12345
1THREA
2BCDFG
3IJKLM
4NOPQS
5UVWXY
(3)

Split the plain message into bigrams (pairs of two letters respectively noted L1 and L2). Complete with a neutral letter of the second grid if the message has an odd length.

Find L1 in grid 1 and L2 in grid 2. Then note the intersection in grid 3 of the row of L1 in grid 1 with the column of L2 in the grid 2.

Example: For the bigram ME, M is in position (row 3, column 5) in grid 1, and E is in position (row 2, column 3) in the grid 2. The intersection in grid 3 is the letter K (row 3, column 3).

Each bigram of the plain text is associated with 3 new letters: a letter taken randomly in the same column as the letter in the grid 1, the letter intersection of the grid 3 and a letter taken randomly in the same row as the letter of the grid 2. These 3 letters (a trigram) represent the coded text for the bigram.

Example: Take T: a random letter in the column 5 (BHMTY) of the grid 1
Take K: the intersection letter of the grid 3 previously found
Take ' D ': a random letter in the row 2 (CDEFG) of the grid 2
The corresponding encrypted trigram is TKD.
Repeat the process for each bigram. The final encrypted message is TKDGNVSAFRAV.

How to decrypt Three Squares cipher?

Decryption by three squares is done with three grids.

Example: Decrypt UDBJDC with the keys ONE, TWO, THREE' corresponding to the grids

(2)
\12345
1TWOAB
2CDEFG
3HIJKL
4MNPQR
5SUVXY
\12345
1ONEAB
2CDFGH
3IJKLM
4PQRST
5UVWXY
(1)
\12345
1THREA
2BCDFG
3IJKLM
4NOPQS
5UVWXY
(3)

Split the message into trigrams (triplets of three letters L1, L2 and L3) and find L1 in the grid 1, L2 in the grid 3 and L3 in the grid 2.

Example: The first trigram is UDB, U is in position (row 5, column 1) in grid 1, D is in position (row 2, column 3) in grid 3, and B is in position (row 1, column 5) in grid 2.

Find the 2 plain letters:
Plain letter 1: intersection of the row of the letter L2 in the grid 3 with the column of the letter L1 in the grid 1
Plain letter 2: intersection of the letter L2 column in grid 3 with the row of the letter L3 in grid 2.

Example: The first plain letter is C, intersection of row 2 of D in grid 3 with column 1 of U in grid 1.
The second plain letter is O, intersection of column 3 of D in grid 3 with row 1 of B in grid 2.
Finally the complete plain message is CODE.

How to recognize a 3 squares ciphertext?

The message has a length multiple of 3.

The final ciphertext is longer than the original of 33%.

The frequency analysis and the coincidence index is similar to an almost random text.

The text is theoretically composed of a maximum of 25 distinct characters if the grids are 5x5 and use the same letters of the alphabet.

What are the variants of the Three Squares cipher?

In the three-square cipher, several ways of ciphering and noting the letters are possible:

The first letter of the bigram is sought in grid 1 and the second letter in grid 2, noted 1-2 (by default) but it is possible to reverse, notation 2-1.

The trigram is then generally noted as follows:
- a letter taken randomly from the same column as the letter in grid 1
- the letter from grid 3
- a letter taken randomly from the same row as the letter of the grid 2
This cipher is indicated 1-3-2 (by default). It is also possible to encrypt with a different order.

Finally, it is possible to mix the grids, such as inverting grids 1 and 2, or other permutation.

Source code

dCode retains ownership of the "Three Squares Cipher" source code. Except explicit open source licence (indicated Creative Commons / free), the "Three Squares Cipher" algorithm, the applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or the "Three Squares Cipher" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and all data download, script, or API access for "Three Squares Cipher" are not public, same for offline use on PC, mobile, tablet, iPhone or Android app!
Reminder : dCode is free to use.

Cite dCode

The copy-paste of the page "Three Squares Cipher" or any of its results, is allowed (even for commercial purposes) as long as you credit dCode!
Exporting results as a .csv or .txt file is free by clicking on the export icon
Cite as source (bibliography):
Three Squares Cipher on dCode.fr [online website], retrieved on 2024-09-14, https://www.dcode.fr/three-squares-cipher

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Feedback and suggestions are welcome so that dCode offers the best 'Three Squares Cipher' tool for free! Thank you!


https://www.dcode.fr/three-squares-cipher
© 2024 dCode — El 'kit de herramientas' definitivo para resolver todos los juegos/acertijos/geocaching/CTF.
 
Feedback